doKmeans | R Documentation |
cluster cells using kmeans algorithm
doKmeans(
gobject,
feat_type = NULL,
spat_unit = NULL,
expression_values = c("normalized", "scaled", "custom"),
feats_to_use = NULL,
genes_to_use = NULL,
dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
dim_reduction_name = "pca",
dimensions_to_use = 1:10,
distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski"),
centers = 10,
iter_max = 100,
nstart = 1000,
algorithm = "Hartigan-Wong",
name = "kmeans",
return_gobject = TRUE,
set_seed = TRUE,
seed_number = 1234
)
gobject |
giotto object |
feat_type |
feature type (e.g. "cell") |
spat_unit |
spatial unit (e.g. "rna", "dna", "protein") |
expression_values |
expression values to use (e.g. "normalized", "scaled", "custom") |
feats_to_use |
subset of features to use |
genes_to_use |
deprecated use feats_to_use |
dim_reduction_to_use |
dimension reduction to use (e.g. "cells", "pca", "umap", "tsne") |
dim_reduction_name |
dimensions reduction name, default to "pca" |
dimensions_to_use |
dimensions to use, default = 1:10 |
distance_method |
distance method (e.g. "original", "pearson", "spearman", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski") |
centers |
number of final clusters, default = 10 |
iter_max |
kmeans maximum iterations, default = 100 |
nstart |
kmeans nstart, default = 1000 |
algorithm |
kmeans algorithm, default to "Hartigan-Wong" |
name |
name for kmeans clustering, default to "kmeans" |
return_gobject |
boolean: return giotto object (default = TRUE) |
set_seed |
set seed (default = TRUE) |
seed_number |
number for seed |
Description on how to use Kmeans clustering method.
giotto object with new clusters appended to cell metadata
kmeans
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.