View source: R/dimension_reduction.R
runPCA | R Documentation |
runs a Principal Component Analysis
runPCA(
gobject,
spat_unit = NULL,
feat_type = NULL,
expression_values = c("normalized", "scaled", "custom"),
reduction = c("cells", "feats"),
name = NULL,
feats_to_use = "hvf",
genes_to_use = NULL,
return_gobject = TRUE,
center = TRUE,
scale_unit = TRUE,
ncp = 100,
method = c("irlba", "exact", "random", "factominer"),
method_params = list(NA),
rev = FALSE,
set_seed = TRUE,
seed_number = 1234,
verbose = TRUE,
...
)
gobject |
giotto object |
spat_unit |
spatial unit |
feat_type |
feature type |
expression_values |
expression values to use |
reduction |
cells or genes |
name |
arbitrary name for PCA run |
feats_to_use |
subset of features to use for PCA |
genes_to_use |
deprecated use feats_to_use |
return_gobject |
boolean: return giotto object (default = TRUE) |
center |
center data first (default = TRUE) |
scale_unit |
scale features before PCA (default = TRUE) |
ncp |
number of principal components to calculate |
method |
which implementation to use |
method_params |
additional parameters |
rev |
do a reverse PCA |
set_seed |
use of seed |
seed_number |
seed number to use |
verbose |
verbosity of the function |
... |
additional parameters for PCA (see details) |
See runPCA
and PCA
for more information about other parameters.
feats_to_use = NULL: will use all features from the selected matrix
feats_to_use = <hvg name>: can be used to select a column name of
highly variable features, created by (see calculateHVF
)
feats_to_use = c('geneA', 'geneB', ...): will use all manually provided features
giotto object with updated PCA dimension recuction
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.