View source: R/dimension_reduction.R
| screePlot | R Documentation |
identify significant principal components (PCs) using an screeplot (a.k.a. elbowplot)
screePlot(
gobject,
spat_unit = NULL,
feat_type = NULL,
name = NULL,
expression_values = c("normalized", "scaled", "custom"),
reduction = c("cells", "feats"),
method = c("irlba", "exact", "random", "factominer"),
rev = FALSE,
feats_to_use = NULL,
genes_to_use = NULL,
center = F,
scale_unit = F,
ncp = 100,
ylim = c(0, 20),
verbose = T,
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "screePlot",
...
)
gobject |
giotto object |
spat_unit |
spatial unit |
feat_type |
feature type |
name |
name of PCA object if available |
expression_values |
expression values to use |
reduction |
cells or features |
method |
which implementation to use |
rev |
do a reverse PCA |
feats_to_use |
subset of features to use for PCA |
genes_to_use |
deprecated, use feats_to_use |
center |
center data before PCA |
scale_unit |
scale features before PCA |
ncp |
number of principal components to calculate |
ylim |
y-axis limits on scree plot |
verbose |
verobsity |
show_plot |
show plot |
return_plot |
return ggplot object |
save_plot |
directly save the plot [boolean] |
save_param |
list of saving parameters from all_plots_save_function() |
default_save_name |
default save name for saving, don't change, change save_name in save_param |
... |
additional arguments to pca function, see |
Screeplot works by plotting the explained variance of each
individual PC in a barplot allowing you to identify which PC provides a significant
contribution (a.k.a 'elbow method').
Screeplot will use an available pca object, based on the parameter 'name', or it will
create it if it's not available (see runPCA)
ggplot object for scree method
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.