Man pages for heiniglab/scPower
Experimental design framework for scRNAseq population studies (eQTL and DE)

annot.dfExample annotation data frame matching the example count...
annot_smartseqExample Smart-seq2 annotation data frame (matching the...
budgetCalculationCalculate total cost dependent on parameters for 10X design
budgetCalculation.libPrepCellCalculate total cost dependent on parameters for 10X design...
budgetCalculation.restrictedDoubletsCalculate total cost dependent on parameters (adaptation with...
budget.optimizationOptimal parameters for increasing budget and simulated and...
calculate.gene.countsGet expressed genes from pseudobulk
calculate.probabilitiesHelp function to calculate expression probability, power and...
cellsBudgetCalculationEstimate possible number of cells per individual depending on...
cellsBudgetCalculation.libPrepCellEstimate possible number of cells per individual depending on...
cellsBudgetCalculation.restrictedDoubletsEstimate possible number of cells per individual depending on...
convert.gamma.parametersConverts two different gamma parameterizations, one using...
count.matrix.exampleExample count matrices to test the expression curve...
counts_smartseqExample Smart-seq2 count matrix for the tutorial
create.pseudobulkReformat count matrix to 3D pseudocount matrix
de.ref.studyDE priors
dispersion.function.estimationGet median values of parameters from the mean-dispersion fits...
disp.fun.paramParameters for mean dispersion fit
disp.fun.param.dropParameters for mean dispersion fit - Drop-seq data
disp.fun.param.smartParameters for mean dispersion fit - Smart-seq2 data
effectSize.DE.simulationSimulation of effect sizes for DE genes (FoldChanges)
effectSize.eQTL.simulationSimulation of effect sizes for eQTL genes (FoldChanges)
eqtl.ref.studyeQTL priors
estimate.exp.prob.count.paramEstimate gene expression probability based on experimental...
estimate.exp.prob.paramEstimate gene expression probability based on experimental...
estimate.exp.prob.valuesEstimate gene expression probability based on mean and...
estimate.mean.dsp.valuesGet the mean and dispersion values for each genes
estimate.size.simulationEstimation of size parameter (1/dsp) for eQTL power...
fdr.optimizationFunction for numeric optimization to get an FDR corrected...
gamma.mixed.fitsParameters for gamma umi fit
gamma.mixed.fits.dropParameters for gamma umi fit - Drop-seq
gamma.mixed.fits.smartParameters for gamma read fit - Smart-seq2 data
gene_lengthExample gene length data frame
gene.rank.calculationCalculation of gene ranks from a normalized count matrix
gene.rank.calculation.vectorCalculation of gene ranks using a vector of mean expression...
meanUMI.calculationCalculate the mean UMI count per cell
mixed.gamma.estimationEstimate the mixed gamma distribution of the mean values
nbinom.estimationEstimate the mean and dispersion parameter for each gene
number.cells.detect.celltypeCell sample size calculation for cell type identification
observed.gene.countsObserved gene counts from multiple data sets to reproduce...
optimize.constant.budgetOptimizing cost parameters to maximize detection power for a...
optimize.constant.budget.libPrepCellOptimizing cost parameters to maximize detection power for a...
optimize.constant.budget.restrictedDoubletsOptimizing cost parameters to maximize detection power for a...
optimize.constant.budget.smartseqOptimizing cost parameters to maximize detection power for a...
optimizeSizeFactorFunction for numeric optimization of size parameter
parametricDispersionFit_DEseqReimplementation of DEseq function for fitting...
power.dePower calculation for a DE gene
power.detect.celltypePower calculation for cell type identification
power.eqtlWrapper funtion to use either simulated power or power based...
power.eqtl.ftestPower calculation for an eQTL gene using the F-test
power.eqtl.simulatedPower calculation for an eQTL gene using simulations
power.eqtl.simulated.helpHelper function for eQTL simulation power calculation
power.general.restrictedDoubletsPower calculation for a DE/eQTL study with 10X design (with a...
power.general.withDoubletsPower calculation for a DE/eQTL study with 10X design (with a...
power.sameReadDepth.restrictedDoubletsPower calculation for a DE/eQTL study with same read depth as...
power.sameReadDepth.withDoubletsPower calculation for a DE/eQTL study with same read depth as...
power.smartseqPower calculation for a DE/eQTL study with Smart-seq design
print_optimalDesign_10XPrint design parameters of optimal design
readDepthBudgetCalculationEstimate possible read depth depending on the total cost and...
readDepthBudgetCalculation.libPrepCellEstimate possible read depth depending on the total cost,...
readDepthBudgetCalculation.restrictedDoubletsEstimate possible read depth depending on the total cost and...
read.umi.fitParameters for read umi fit
runShinyRun Shiny app for power estimation
sample.disp.valuesSample the dispersion values dependent on mean values using...
sample.mean.values.quantilesDraw the mean values using the quantile distributions of the...
sample.mean.values.randomRandomly sample the mean values using the gamma mixed...
sampleSizeBudgetCalculationEstimate possible sample size depending on the total cost and...
sampleSizeBudgetCalculation.libPrepCellEstimate possible sample size depending on the total cost,...
sampleSizeBudgetCalculation.restrictedDoubletsEstimate possible sample size depending on the total cost and...
select.cutoffsIdentifying the expression threshold combination that...
sim.eqtl.pvalsPrecalcuated p-values from eQTL simulation
simulated.DE.valuesResults of DE power generated by simulations with powsimR
simulated.eQTL.valuesResults of eQTL power generated by self-implemented...
size.estimatesPrecalcuated size estimates for eQTL power simulation
sizeFactorsPosCountsReimplementation of DEseq2 function for size factors with...
sizeFactorsStandardReimplementation of DEseq function for size factors
umi.gamma.relationEstimate linear relationship between the gamma mixed...
umi.read.relationEstimate logarithmic relationship between mean UMI counts and...
uniform.ranks.intervalSimulation of gene ranks uniformly distributed in a certain...
visualize.gamma.fitsPlotting function to visualize simulated mean values from...
visualize.power.gridPlotting function to visualize calculated power as heatmap,...
heiniglab/scPower documentation built on Jan. 9, 2025, 12:13 p.m.