Description Usage Arguments Value Examples
prediction by logistic regression for multiple data
1 2 | tm_facs_logistic(att_set, meta_model, sig_set, Tissue_opt = FALSE,
celltype_specific = FALSE)
|
att_set |
attribute set |
meta_model |
logistic regression model from create_meta_index_av |
sig_set |
signature set |
Tissue_opt |
TRUE if user wants to find tissue-origin |
celltype_specific |
TRUE if user wants to calculate the weight fo each tissue with only matched cell type. Otherwise, weight for each tissue will be calculated with whole celltypes (deault: FALSE; tissue_opt should be TRUE to use this parameter) |
6 results: conf_list, conf_ratio_list, val_list, tissue_list, f1_list, unassign_list
conf_list: confusion matrix
conf_ratio_list: ratio_list (confusion_ratio_matrix)
val_list: validation matrix
tissue_list
f1_list: f1 score
unassign_list
- each result is composed of sample in TM (ex: res$conf_list[1]: confusion matrix of Aorta tissue)
1 2 | meta_model <- create_meta_index_av(att_set1, sig_set1)
res <- tm_facs_logistic(att_set1, meta_model, sig_set2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.