selOutliers: select outliers based on PCA analysis

Description Usage Arguments Details Value See Also Examples

Description

select outliers from miRNA or mRNA samples based on PCA analysis

Usage

1
selOutliers(obj, subset, method = "aq.plot", delete = FALSE, add.pheno = TRUE, n.dim = 2)

Arguments

obj

a corObject

subset

"miRNA" or "mRNA"

method

method used to select the outliers "aq.plot"

delete

TRUE or FALSE. If TRUE, outlier samples are removed.

add.pheno

TRUE or FALSE. If TRUE, "is.outlier" column is added to pheno slot and then a PCA plot highlighting outlier samples is produced.

n.dim

number of components of the PCA to use.

Details

This is an implementation of mvoutlier package. Check the origninal source for more information.

Value

See Also

mvoutlier, plotPca

Examples

1
2
3
4
5
data(data.obj)
#selOutliers(data.obj, "miRNA", add.pheno=FALSE)
#data.obj.out <- selOutliers(data.obj, "miRNA", add.pheno=TRUE)
#head(data.obj@pheno.miRNA)
#head(data.obj.out@pheno.miRNA)

mariavica/mircomb documentation built on Feb. 3, 2020, 2:28 a.m.