Description Usage Arguments Details Value See Also Examples
Time analysis of a corObject
1 2 |
obj |
corObject |
dataset |
"miRNA" or "mRNA" |
classes |
column name of the pheno.miRNA or pheno.mRNA encoding codification of time variable. The column must contain "0" (t_init) and "1" (t_fin), or the specific times. Missing values are also allowed. |
method.dif |
"time.point" or "linear.regression" |
method.adj |
Multiple testing correction method used. One of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none" (see p.adjust). |
var.t.test |
TRUE or FALSE (default). If TRUE, considers equality of variances in a T-test. |
If method.dif="time.point", both times are compared using a t-test, time variable should be encoded as kbd"0" (t_init) and "1" (t_fin).
a corObject with a diffexp.miRNA or diffexp.mRNA slot added, where the rownames of the data.frame are the names of the miRNAs or mRNAs. Depending on the selected method, the diffexp is a data.frame with the following columns:
If method.dif="time.point":
FC: foldchange between the two selected times.
logratio: logratio between the two selected times.
meanExp: mean value log2-expression for the probe across all samples.
pval: p values. In RankProd the minimum of both p values is reported.
adj.pval: p values corrected for multiple testing. In the RankProd the pfp values (estimated percentage of false positives, which are, in theory, equivalent to False Discovery Rate) are added.
If method.dif="linear.regression":
slope: slope of the linear regression.
meanExp: mean value log2-expression for the probe across all samples.
pval: p values associated to the slope of the linear regression.
adj.pval: p values corrected for multiple testing.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ################################
### data special preparation ###
################################
data(miRNA)
data(mRNA)
### simulated phenotypical: 3 samples in 4 time-points, one treatment.
pheno.miRNA<-data.frame(sample=rep(1:3, each=4),
time=rep(c(1,2,5,9),3),
time_alt=rep(c(0,NA,NA,1),3))
rownames(pheno.miRNA)<-paste(pheno.miRNA$sample,pheno.miRNA$time,sep="_")
pheno.mRNA<-pheno.miRNA #same sample distribution
## modify sample names from miRNA and mRNA dataset
colnames(miRNA)<-rownames(pheno.miRNA)
colnames(mRNA)<-rownames(pheno.mRNA)
############################
### start of the example ###
############################
minimal<-new("corObject",dat.miRNA=miRNA,dat.mRNA=mRNA,
pheno.miRNA=pheno.miRNA,pheno.mRNA=pheno.mRNA)
#### comparing times 1 (t_init) and 9 (t_fin):
minimal.diffexp<-addLong(minimal, "miRNA", classes="time_alt",
method.dif="time.point")
head(minimal.diffexp@diffexp.miRNA)
#### treated as linear regression:
minimal.diffexp<-addLong(minimal, "miRNA", classes="time",
method.dif="linear.regression")
head(minimal.diffexp@diffexp.miRNA)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.