Description Usage Arguments Value Examples
outlierFind to identify outliers in a matrix using both scoresMod and boxplotMod
1 2 3 4 5 6 7 8 9 10 11 12 | outlierFind(
protClass,
outlierLevel = "peptide",
numRefCols = 5,
numDataCols = 9,
outlierMeth = "boxplot",
range = 3,
proba = 0.99,
eps = eps,
cpus = 4,
randomError = TRUE
)
|
protClass |
a matrix of protein, peptide identifiers and normalized specific amounts |
outlierLevel |
peptide for outlier spectra within peptides, or protein for outlier peptides within proteins' |
numRefCols |
number of columns before Mass Spectrometry data columns |
numDataCols |
how many columns in MS data |
outlierMeth |
boxplot (recommended), scores, or none |
range |
the range parameter used for identifying outliers |
proba |
probability to exclude outler for scores method |
eps |
value to add before log2 transfromations (to avoid taking log of zero) |
cpus |
number of cpus to use for parallel processing |
randomError |
T if allow it to be random |
additional column of indicators of outlier peptides or outlier spectra for a set of proteins or peptides
1 2 3 4 5 6 7 8 9 | set.seed(17356)
eps <- 0.029885209
data(TLN1_test)
flagSpectraBox <- outlierFind(protClass=TLN1_test,
outlierLevel="peptide", numRefCols=5, numDataCols=9,
outlierMeth="boxplot", range=3, eps=eps,
cpus=1, randomError=TRUE)
# examine numbers of spectra that are outliers
table(flagSpectraBox$outlier.num.spectra)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.