profileSummarize: protProfileSummarize calculates mean and SE for each channel...

Description Usage Arguments Value Examples

View source: R/profileSummarize.r

Description

protProfileSummarize calculates mean and SE for each channel in each prot using random effect model or arithmetic mean random effect model can avoid dominance of a sequence with too many spectra

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
profileSummarize(
  protsCombineCnew,
  numRefCols,
  numDataCols,
  refColsKeep = c(1, 2),
  eps,
  GroupBy = "protId",
  outlierExclude = "spectraAndPeptide",
  cpus = 1
)

Arguments

protsCombineCnew

a matrix of protein information and normalized specific amounts and outlier information

numRefCols

number of columns before Mass Spectrometry data columns

numDataCols

how many columns in MS data

refColsKeep

which reference (non-data) columns to keep

eps

epsilon to avoid log(0)

GroupBy

"protId" if average by protein; "peptideId" if average by peptide

outlierExclude

"none", "spectra", or "spectraAndpeptide" (default) according to exclusion level

cpus

number of cpus to use for parallel processing

Value

protProfileSummaryIdentity: mean or weighted mean normalized specific amount profiles

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
set.seed(17356)
eps <- 0.029885209
flagSpectraBox <- outlierFind(protClass=TLN1_test,
                              outlierLevel="peptide", numRefCols=5, numDataCols=9,
                              outlierMeth="boxplot", range=3, eps=eps,
                              cpus=1, randomError=TRUE)
# examine numbers of spectra that are outliers
table(flagSpectraBox$outlier.num.spectra)
pepProfiles <- profileSummarize(protsCombineCnew=flagSpectraBox,
                                numRefCols=6, numDataCols=9, refColsKeep=c(1,2,4),eps=eps,
                                GroupBy="peptideId", outlierExclude="spectra")
str(pepProfiles, strict.width="cut", width=65)

mooredf22/protlocassign0p1p1 documentation built on Feb. 7, 2022, 1:55 a.m.