Description Usage Arguments Value Examples
View source: R/profileSummarize.r
protProfileSummarize calculates mean and SE for each channel in each prot using random effect model or arithmetic mean random effect model can avoid dominance of a sequence with too many spectra
1 2 3 4 5 6 7 8 9 10 | profileSummarize(
protsCombineCnew,
numRefCols,
numDataCols,
refColsKeep = c(1, 2),
eps,
GroupBy = "protId",
outlierExclude = "spectraAndPeptide",
cpus = 1
)
|
protsCombineCnew |
a matrix of protein information and normalized specific amounts and outlier information |
numRefCols |
number of columns before Mass Spectrometry data columns |
numDataCols |
how many columns in MS data |
refColsKeep |
which reference (non-data) columns to keep |
eps |
epsilon to avoid log(0) |
GroupBy |
"protId" if average by protein; "peptideId" if average by peptide |
outlierExclude |
"none", "spectra", or "spectraAndpeptide" (default) according to exclusion level |
cpus |
number of cpus to use for parallel processing |
protProfileSummaryIdentity: mean or weighted mean normalized specific amount profiles
1 2 3 4 5 6 7 8 9 10 11 12 | set.seed(17356)
eps <- 0.029885209
flagSpectraBox <- outlierFind(protClass=TLN1_test,
outlierLevel="peptide", numRefCols=5, numDataCols=9,
outlierMeth="boxplot", range=3, eps=eps,
cpus=1, randomError=TRUE)
# examine numbers of spectra that are outliers
table(flagSpectraBox$outlier.num.spectra)
pepProfiles <- profileSummarize(protsCombineCnew=flagSpectraBox,
numRefCols=6, numDataCols=9, refColsKeep=c(1,2,4),eps=eps,
GroupBy="peptideId", outlierExclude="spectra")
str(pepProfiles, strict.width="cut", width=65)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.