PCA: Run Principal Component Analysis on gene expression

Description Usage Arguments Value

Description

Run prcomp for PCA dimensionality reduction

Usage

1
2
3
PCA(object, pc.genes = NULL, do.print = TRUE, pcs.print = 5,
  pcs.store = 40, genes.print = 30, use.imputed = FALSE,
  rev.pca = FALSE, ...)

Arguments

object

Seurat object

pc.genes

Genes to use as input for PCA. Default is object@var.genes

do.print

Print the top genes associated with high/low loadings for the PCs

pcs.print

Number of PCs to print genes for

pcs.store

Number of PCs to store

genes.print

Number of genes to print for each PC

use.imputed

Run PCA on imputed values (FALSE by default)

rev.pca

By default computes the PCA on the cell x gene matrix. Setting to true will compute it on gene x cell matrix.

...

Additional arguments to be passed to prcomp

Value

Returns Seurat object with an PCA embedding (object@pca.rot) and gene projection matrix (object@pca.x). The PCA object itself is stored in object@pca.obj[[1]]


nukappa/seurat_v2 documentation built on May 24, 2019, 9:57 a.m.