# QUAP - quadratic approximation (used to be called map)
# to-do:
# utility function to convert alist() construction with <- tagged linear model to regular ~ variety
# do some error checking here
flist_untag <- function(flist,eval=TRUE) {
for ( i in 1:length(flist) ) {
if ( !is.null(names(flist)) ) {
if ( names(flist)[i]!="" ) {
warning( concat("Named entry '",names(flist)[i],"' detected. Make sure you didn't use '=' where you meant '~' or '<-'.") )
}
}#!is.null
if ( class(flist[[i]])=="<-" ) {
# tagged formula, so convert to ~ formula expression
flist[[i]][[1]] <- as.name("~")
}
# eval required to convert from class language to class formula
if ( eval==TRUE )
flist[[i]] <- eval(flist[[i]])
}
as.list(flist)
}
# main event
quap <- function( flist , data , start , method="BFGS" , hessian=TRUE , debug=FALSE , verbose=FALSE ,dofit=TRUE , latent_bounded=FALSE , ... ) {
########################################
# check arguments
if ( missing(flist) ) stop( "Formula required." )
if ( class(flist) != "list" ) {
if ( class(flist)=="formula" ) {
flist <- list(flist)
} else {
stop( "Formula or list of formulas required." )
}
}
if ( missing(start) ) start <- list()
if ( missing(data) ) stop( "'data' required." )
if ( !inherits(data, c("list","data.frame")) ) {
stop( "'data' must be of class list or data.frame." )
}
flist.orig <- flist
flist <- flist_untag(flist)
########################################
# check for common issues
# (1) NAs in data vectors
# tricky, because only want to check used variables
# (2) type mismatch for outcome variable
########################################
# private functions
# substitution list - NOT YET IMPLEMENTED
# will allow common (Stan-like) names for distributions
density_sub_list <- list(
normal = 'dnorm',
binomial = 'dbinom',
poisson = 'dpois',
gamma = 'dgamma2', # mu,scale version
betabinomial = 'dbetabinom', #in emdbook package
gammapoisson = 'dgampois',
cauchy = 'dcauchy',
uniform = 'dunif',
laplace = 'dlaplace'
)
idx_marker_string <- "___"
# function to sample from prior specified with density function
sample_from_prior <- function( f ) {
RHS <- f[[3]]
the_density <- as.character( RHS[[1]] )
the_rdensity <- the_density
substr( the_rdensity , 1 , 1 ) <- "r"
pars <- vector(mode="list",length=length(RHS))
pars[[1]] <- 1
for ( i in 1:(length(pars)-1) ) {
pars[[i+1]] <- RHS[[i+1]]
# for each argument, eval in context of data frame, in case using any constants defined there
pars[[i+1]] <- eval( pars[[i+1]] , as.list(data) )
}
result <- do.call( the_rdensity , args=pars )
return(result)
}
# these functions are the engine that does the optimization
# trick is to build R code for objective function that is passed to parser
# it's slow, but easier to debug
dparser <- function( flist , e ) {
# merge this into make_minuslogl?
r <- sapply( flist , function(i) sum(eval(parse(text=i),envir=e)) )
-sum(r)
}
# this function is needed to make optim work with vector parameters
pars_to_vectors <- function( pars_orig , veclist ) {
pars_new <- list()
# first copy all scalar parameters
for ( i in 1:length(pars_orig) ) {
x <- strsplit( names(pars_orig)[i] , idx_marker_string )[[1]]
if ( length(x)==1 ) {
pars_new[[ x ]] <- pars_orig[[i]]
}
}
# now compose vectors
for ( i in 1:length(veclist) ) {
newvec <- rep( 0 , veclist[[i]]$n )
for ( j in 1:veclist[[i]]$n ) {
name_orig <- paste( veclist[[i]]$name , idx_marker_string , j , sep="" , concat="" )
newvec[j] <- pars_orig[[ name_orig ]]
}
pars_new[[ veclist[[i]]$name ]] <- newvec
}#i
return(pars_new)
}
make_minuslogl <- function( pars , flist , data , veclist ) {
# check for pars with name that ends in _._n
# convert them to vector
if ( length(veclist)>0 ) pars <- pars_to_vectors( pars , veclist )
e <- list( as.list(data) , as.list(pars) )
e <- unlist( e , recursive=FALSE )
dparser(flist,e)
}
link.names <- c("log","logit")
invlink.names <- c("exp","logistic")
formula2text <- function( f ) {
# must keep named arguments with names,
# so user can pass arguments out of order to density function
RHS <- f[[3]]
LHS <- f[[2]]
flag_monad_linear_model <- FALSE
if ( length(RHS)==1 ) {
if ( class(RHS)=="numeric" | class(RHS)=="name" )
flag_monad_linear_model <- TRUE
fname <- ""
} else {
fname <- as.character( RHS[[1]] )
}
if ( fname=="[" | fname=="+" | fname=="*" | fname=="-" | fname=="/" | fname=="%*%" | fname %in% invlink.names | flag_monad_linear_model==TRUE ) {
# linear model formula with no density (but maybe invlink) function
# return a list with parameter name in [[1]] and text of RHS in [[2]]
thetext <- list( as.character(LHS) , paste( deparse(RHS) , collapse=" " ) )
} else {
# likelihood or prior formula
n_args <- length(RHS)
args_list <- as.list(RHS)
# check for LHS with brackets []
if ( class(LHS)=="call" ) {
if ( as.character(LHS[[1]])=="[" ) {
ival <- suppressWarnings( as.numeric(as.character(LHS[[3]])) )
if ( is.na(ival) ) {
# [var] form, so just delete the bracket so prior properly vectorizes over vector of parameters, not over entire data table
LHS <- as.character(LHS[[2]])
} else {
# [num] form, so preserve index number, because prior is specific to this index
LHS <- deparse(LHS)
}
}
}
args_list[[1]] <- LHS
args_list[[n_args+1]] <- "TRUE"
args_names <- names(RHS)[-1]
if ( is.null(args_names) ) args_names <- rep("",n_args-1)
args_names <- c( "x" , args_names , "log" )
for ( i in 1:length(args_names) ) {
if ( args_names[i]=="" ) {
# no argument name
args_names[i] <- args_list[i]
} else {
# prepend argument name
args_names[i] <- paste( args_names[i] , args_list[i] , sep="=" )
}
}
args_text <- paste( args_names , collapse=" , " )
thetext <- paste( RHS[[1]] , "(" , args_text , ")" , sep="" )
}
return( thetext )
}
##############
# grep function for search-replace of linear model symbols
# trick is that symbol needs to be preceded by [(=*+ ] so grep doesn't replace copies embedded inside other symbols
# e.g. don't want to expand the "p" inside "ample"
#
# target : string to search for (usually parameter name like "mu")
# replacement : what to replace with (usually a linear model)
# x : where to search, usually a formula as character
# add.par : whether to enclose replacement in parentheses
# needed , in case of vector or list construction in likelihood
mygrep <- function( target , replacement , x , add.par=TRUE ) {
wild <- "[()=*+, ]"
pattern <- paste( wild , target , wild , sep="" , collapse="" )
x <- concat( x , " ") # space buffer on end, so catch end symbols too
m <- regexpr( pattern , x )
if ( m==-1 ) return( x )
s <- regmatches( x=x , m=m )
if ( add.par==TRUE ) replacement <- paste( "(" , replacement , ")" , collapse="" )
w.start <- substr(s,1,1)
w.end <- substr(s,nchar(s),nchar(s))
r <- paste( w.start , replacement , w.end , sep="" , collapse="" )
gsub( pattern=s , replacement=r , x=x , fixed=TRUE )
}
########################################
# convert formulas to text in proper call order
# check for vectorized priors and expand
# check for link functions on left and convert to inv-link on right
# also build list of parameters with priors as we go
pars_with_priors <- list()
if ( length(flist) > 1 ) {
flag_flatten <- FALSE
for ( i in 2:length(flist) ) {
if ( !(class(flist[[i]])=="formula") )
stop( "Input not a formula." )
LHS <- flist[[i]][[2]]
if ( class(LHS)=="call" ) {
fname <- as.character(LHS[[1]])
if ( fname=="c" | fname=="[" | fname %in% link.names ) {
if ( fname=="c" ) {
# found a vector prior
newflist <- list()
num_pars <- length(LHS) - 1
for ( j in 1:num_pars ) {
newflist[[j]] <- flist[[i]]
newflist[[j]][[2]] <- LHS[[j+1]]
pars_with_priors[[ as.character(LHS[[j+1]]) ]] <- 1
} #j
flist[[i]] <- newflist
flag_flatten <- TRUE
}
if ( fname %in% link.names ) {
the.link <- as.character( LHS[[1]] )
# strip link from left hand side
flist[[i]][[2]] <- flist[[i]][[2]][[2]]
# move inverse link to right hand side
the.invlink <- invlink.names[ which(link.names==the.link) ]
old.RHS <- flist[[i]][[3]]
flist[[i]][[3]] <- as.call( list( as.name(the.invlink) , old.RHS ) )
}
if ( fname=="[" ) {
# par[.], so need to expand any index variable
pars_with_priors[[deparse(LHS)]] <- 1
}
} else {
# a call other than c() detected on left hand side
stop( paste( "Invalid prior specification:" , deparse(flist[[i]]) ) )
}
} else {
# not a call, so just record name of parameter
pars_with_priors[[as.character(LHS)]] <- 1
}
} #i
if ( flag_flatten ) flist <- unlist(flist,recursive=FALSE)
}
if (debug) print(flist)
####################
# abstract bounded parameters to latent continuous
# bounded means priors: phi ~ dunif(), phi ~ exp()
bounded_dist_list <- c("dunif","dexp")
bounded_links <- c("logit","log") # convert to latent scale
bounded_invlinks <- c("inv_logit","exp") # convert latent to original scale
pars_latent <- list()
if ( latent_bounded==TRUE )
if ( length(flist) > 1 ) {
flag_flatten <- FALSE
for ( i in 2:length(flist) ) {
if ( !(class(flist[[i]])=="formula") )
stop( "Input not a formula." )
LHS <- flist[[i]][[2]]
if ( class(LHS)=="call" ) {
# we do nothing with these - they should be expanded already
} else {
# not a call, single symbol
# check if observed
if ( !(as.character(LHS) %in% names(data)) ) {
# check for bounded priors
RHSd <- flist[[i]][[3]][[1]]
if ( as.character(RHSd) %in% bounded_dist_list ) {
pars_latent[[as.character(LHS)]] <- list( as.character(RHSd) , flist[[i]][[3]] )
}
}
}
} #i
}
if (debug) print(pars_latent)
# convert from formulas to text
# this also splits linear models
flist2 <- lapply( flist , formula2text )
if (debug) print(flist2)
links <- list()
# check for linear models in flist2 and do search-replace in likelihood
if ( length(flist2) > 1 ) {
# loop in reverse order, so linear models lower down get pulled up
for ( i in length(flist2):2 ) {
# linear models are class list
if ( class(flist2[[i]])=="list" ) {
LHS <- flist2[[i]][[1]]
RHS <- flist2[[i]][[2]]
# save current likelihood, so can check for link
lik_save <- flist2[[1]]
# replace in likelihood
flist2[[1]] <- mygrep( LHS , RHS , flist2[[1]] , add.par=FALSE )
# need a link function?
if ( flist2[[1]] != lik_save ) {
# build a link function with current linear model in it
links[[ length(links)+1 ]] <- flist2[[i]]
}
# also search in other linear models above this one
if ( i > 2 ) {
# RHSp <- paste( "(" , RHS , ")" , collapse="" )
for ( j in (i-1):2 ) {
if ( class(flist2[[j]])=="list" ) {
#flist2[[j]][[2]] <- gsub( LHS , RHSp , flist2[[j]][[2]] )
flist2[[j]][[2]] <- mygrep( LHS , RHS , flist2[[j]][[2]] , add.par=TRUE )
} else {
# could be another likelihood
flist2[[j]] <- mygrep( LHS , RHS , flist2[[j]] , add.par=FALSE )
}
}
}
# remove symbol from list of parameters with priors
pars_with_priors[[ LHS ]] <- NULL
}
}
# second pass to remove linear models
flist3 <- list()
j <- 1
for ( i in 1:length(flist2) ) {
if ( class(flist2[[i]]) != "list" ) {
flist3[[j]] <- flist2[[i]]
j <- j + 1
}
}
flist2 <- flist3
}
# now for each latent parameter,
# replace it with inv_link(latent_name) in formula
# also compute Jacobian adjustments here
jacobi_ads <- list()
if ( latent_bounded==TRUE )
if ( length(pars_latent) > 0 ) {
for ( i in 1:length(pars_latent) ) {
par_name <- names(pars_latent)[i]
the_prior <- pars_latent[[i]][[1]]
the_invlink <- "exp"
latent_name <- concat( the_invlink , "(" , par_name , ")" )
if ( the_prior=="dunif" ) {
the_invlink <- "inv_unif"
latent_name <- concat( the_invlink , "(" , par_name , "," , as.character(pars_latent[[i]][[2]][[2]]) , "," , as.character(pars_latent[[i]][[2]][[3]]) , ")" )
}
for ( j in 1:length(flist2) ) {
# find and replace on each line of formula
flist2[[j]] <- mygrep( par_name , latent_name , flist2[[j]] , add.par=FALSE )
}#j
# log absolute jacobians
if ( the_invlink=="exp" ) {
# target += x
#jacobi_ads[[par_name]] <- par_name
}
}#i
}
flist.ll <- flist2[[1]] # first formula, just for log-likelihood
if (debug) {
print(flist.ll)
}
########################################
# prep and check start list
if (debug) {
print(start)
print(pars_with_priors)
}
pars <- start
# make sure all parameters with priors are in start list
# if priors defined, but not in start list, use prior to guess start value
if ( any( !(names(pars_with_priors) %in% names(pars)) ) ) {
bad_pars <- names(pars_with_priors)[ !(names(pars_with_priors) %in% names(pars)) ]
#stop( paste( "Priors defined for parameters not in start list:" , paste(bad_pars,collapse=" ") ) )
if ( verbose==TRUE )
message( paste( "Sampling start values from priors for:" , paste(bad_pars,collapse=" ") ) )
for ( k in bad_pars ) {
if ( k %in% names(data) ) next
# scan formula for right prior
for ( g in 2:length(flist) ) {
# check for `[`
if ( class(flist[[g]][[2]])=="call" ) {
# assume `[`, because other calls should be purged by now
the_par_with_index <- deparse(flist[[g]][[2]])
the_par <- as.character( flist[[g]][[2]][[2]] )
the_index_or_var <- as.character( flist[[g]][[2]][[3]] )
if ( the_par_with_index == k ) {
# right prior, but need to decide if numeric index or variable index
idx_num <- suppressWarnings( as.numeric(the_index_or_var) )
if ( !is.na(idx_num) ) {
# for par[num],
# sample one value and insert into vector in start list
if ( is.null( start[[the_par]] ) ) {
# not in start list yet, so add
# get length of vector by scanning priors
max_index <- 1
for ( h in 2:length(flist) ) {
if ( class(flist[[h]][[2]])=="call" ) {
if ( as.character(flist[[h]][[2]][[2]])=="[" & as.character(flist[[h]][[2]][[3]])==the_par ) {
nval <- suppressWarnings( as.numeric(flist[[h]][[2]][[3]]) )
if ( !is.null(nval) ) {
max_index <- max( max_index , nval )
}#is numeric
}#is `[` and has same parameter name
}#is call
}#h
start[[the_par]] <- rep(0,max_index)
the_index <- as.numeric( flist[[g]][[2]][[3]] )
start[[the_par]][the_index] <- sample_from_prior( flist[[g]] )
} else {
# vector already there, so insert in right place
the_index <- as.numeric( flist[[g]][[2]][[3]] )
start[[the_par]][the_index] <- sample_from_prior( flist[[g]] )
}
}# numeric index
if ( is.na(idx_num) ) {
# par[var] format
# need to sample vector of values
# get length of index variable
the_var <- as.character( flist[[g]][[2]][[3]] )
n_unique <- length(unique(data[[the_var]]))
start[[the_par]] <- replicate( n_unique , sample_from_prior( flist[[g]] ) )
}
}#matched
} else {
# ordinary parameter name, we hope
the_par <- paste( as.character(flist[[g]][[2]]) , collapse="" )
if ( the_par == k ) {
f <- flist[[g]]
theta <- sample_from_prior( f )
start[[k]] <- theta
}
}
}#g
}#k
}
# list parameters without explicit priors and warn
if ( verbose==TRUE ) {
if ( any( !(names(pars) %in% names(pars_with_priors)) ) ) {
flat_pars <- names(pars)[ !(names(pars) %in% names(pars_with_priors)) ]
message( paste( "Using flat priors for:" , paste(flat_pars,collapse=" ") ) )
}
}
#################
# handle vector parameters
# at this point in parse, may have vector parameters in pars (and start)
# optim can't handle vector paramters
# so need to:
# (1) convert vector to series of scalar par_._1, par_._2, ..., par_._n
# (2) pass new pars that are flat scalar to optim
# (3) inside minuslogl, parameters names par_._1 etc are converted back to vector with name 'par'
# (4) after optim converges, convert solution back to vector, for both coef and vcov
pars <- start
pars_flat <- list()
veclist <- list() # holds info needed to convert back to scalars during search
for ( i in 1:length(pars) ) {
n <- length( pars[[i]] )
par_name <- names(pars)[i]
if ( n ==1 ) {
# regular parameter, so just copy it
pars_flat[[par_name]] <- pars[[i]]
} else {
# vector parameter, so explode it into individual parameters
for ( j in 1:n ) {
new_name <- concat( par_name , idx_marker_string , j )
pars_flat[[new_name]] <- pars[[i]][j]
}#j
# and store name and dimension info, so can easily explode later
veclist[[par_name]] <- list( name=par_name , n=n )
}
}#i
pars <- pars_flat
#######
# add jacobian adjustments to flist2 as plain text to evaluate
if ( length(jacobi_ads) > 0 ) {
for ( i in 1:length(jacobi_ads) ) {
flist2[[ length(flist2)+1 ]] <- as.character( jacobi_ads[[i]] )
}#i
}
########################################
# call optim for search
if ( debug==TRUE ) {
print("trying optim now in list:")
print(flist2)
}
fit <- list()
if ( dofit==TRUE ) {
fit <- try(
suppressWarnings(optim( par=pars , fn=make_minuslogl , flist=flist2 , data=data , veclist=veclist , hessian=hessian , method=method , ... ))
, silent=TRUE
)
if ( class(fit)=="try-error" ) {
# something went wrong...try to figure it out
msg <- attr(fit,"condition")$message
objnotfound <- grep( "object '.*' not found" , msg )
if ( length(objnotfound) > 0 ) {
# a parameter without prior or start value?
obj_name <- regmatches( msg , gregexpr( "'.*'" , msg ) )
out_msg <- paste( "Cannot find ",obj_name,".\nIf this is a parameter, try defining a prior for it or providing a start value.\nIf this is a variable, make sure it is in the data list." , collapse="" , sep="" )
stop( out_msg )
}
objnotfound <- grep( "initial value in 'vmmin' is not finite" , msg )
if ( length(objnotfound) > 0 ) {
# missing values in data?
out_msg <- paste( msg,"\nThe start values for the parameters were invalid. This could be caused by missing values (NA) in the data or by start values outside the parameter constraints. If there are no NA values in the data, try using explicit start values." , collapse="" , sep="" )
stop( out_msg )
}
objnotfound <- grep( "non-finite finite-difference value" , msg )
if ( length(objnotfound) > 0 ) {
# bad start values?
out_msg <- paste( msg,"\nStart values for parameters may be too far from MAP.\nTry better priors or use explicit start values.\nIf you sampled random start values, just trying again may work.\nStart values used in this attempt:\n", paste(names(start),"=",start,collapse="\n") , collapse="" , sep="" )
stop( out_msg )
}
# not recognized
stop(msg)
}
}
########################################
# prep results
# convert vector parameters back to vector form
#pars_vec <- pars_to_vectors( fit$pars , veclist )
#pars_raw <- fit$pars
if ( hessian & dofit ) {
vcov <- try( solve(fit$hessian) )
if ( class(vcov)[1]=="try-error" ) {
warning( "Error when computing variance-covariance matrix (Hessian). Fit may not be reliable." )
vcov <- matrix( NA , nrow=length(pars) , ncol=length(pars) )
}
} else {
vcov <- matrix( NA , nrow=length(pars) , ncol=length(pars) )
}
# compute minus log-likelihood at MAP, ignoring priors to do so
# need this for correct deviance calculation, as deviance ignores priors
fmll <- function() return(NULL)
if ( dofit==TRUE ) {
fit$minuslogl <- make_minuslogl( fit$par , flist=flist.ll , data=data , veclist=veclist )
# function to use later in computing DIC
fmll <- function(pars) make_minuslogl( pars , flist=flist.ll , data=data , veclist=veclist )
}
# rename any _._n parameters to [n]
coefs <- 0
if ( dofit==TRUE ) {
coefs <- fit$par
for ( i in 1:length(coefs) ) {
a_split <- strsplit( names(coefs)[i] , idx_marker_string )[[1]]
if ( length(a_split)>1 ) {
new_name <- concat( a_split[1] , "[" , a_split[2] , "]" )
names(coefs)[i] <- new_name
}
}
}
########################################
# build and return result
m <- new( "map" ,
call = match.call(),
coef = coefs,
vcov = vcov,
optim = fit,
data = as.list(data),
start = start,
formula = flist.orig,
formula_parsed = flist2,
fminuslogl = fmll,
links = links )
attr(m,"formula_exploded") <- flist # expanded c() constructs
attr(m,"df") <- length(m@coef)
attr(m,"veclist") <- veclist
attr(m,"parslatent") <- pars_latent
if (!missing(data)) attr(m,"nobs") = length(data[[1]])
# check convergence and warn
if ( dofit==TRUE ) xcheckconvergence(m)
# result
m
}
map <- quap
# EXAMPLES
if ( FALSE ) {
data(cars)
flist0 <- list(
dist ~ dnorm( mean=a+b*speed , sd=sigma )
)
flist0 <- list(
dist ~ dnorm( mean=mu , sd=sigma ) ,
mu ~ a+b*speed
)
flist1 <- list(
dist ~ dnorm( mean=a+b*speed , sd=sigma ) ,
b ~ dnorm(0,1) ,
sigma ~ dcauchy(0,1)
)
flist1 <- list(
dist ~ dnorm( mean=mu , sd=sigma ) ,
mu ~ a+b*speed ,
b ~ dnorm(0,1) ,
sigma ~ dcauchy(0,1)
)
flist2 <- list(
dist ~ dnorm( mean=a+b*speed , sd=sigma ) ,
c(a,b) ~ dnorm(0,10) ,
sigma ~ dcauchy(0,1)
)
# curve( dlaplace(x,1,0) , from=-10, to=10 )
flist3 <- list(
dist ~ dnorm( mean=a+b*speed , sd=sigma ) ,
b ~ dlaplace(1) ,
sigma ~ dcauchy(0,1)
)
fit <- map( flist1 , start=list(a=40,b=0.1,sigma=20) , data=cars , debug=FALSE )
#########
library(rethinking)
data(chimpanzees)
flist1 <- list(
pulled.left ~ dbinom( prob=logistic( a + b*prosoc.left ) , size=1 ),
c(a,b) ~ dnorm(0,1)
)
flist2 <- list(
pulled.left ~ dbinom( size=1 , prob=logistic( a + b*prosoc.left ) ),
b ~ dnorm(0,1)
)
flist4 <- alist(
pulled.left ~ dbinom( prob=p , size=1 ),
logit(p) <- a + b*prosoc.left ,
c(a,b) ~ dnorm(0,1)
)
fit2 <- map( flist4 , data=chimpanzees , start=list(a=0,b=0) , debug=FALSE )
########
# regularized logistic regression example
y <- c( rep(0,10) , rep(1,10) )
x <- c( rep(-1,9) , rep(1,11) )
flist0 <- list(
y ~ dbinom( prob=logistic( a + b*x ) , size=1 )
)
flist1 <- list(
y ~ dbinom( prob=logistic( a + b*x ) , size=1 ),
c(a,b) ~ dnorm(0,10)
)
fit3a <- map( flist0 , data=list(y=y,x=x) , start=list(a=0,b=0) )
fit3b <- map( flist1 , data=list(y=y,x=x) , start=list(a=0,b=0) )
plot( y ~ x )
p <- sample.naive.posterior(fit3b)
xseq <- seq(-1,1,length.out=20)
pi.mu <- sapply( xseq , function(x) mean(logistic(p$a+p$b*x)) )
pi.ci <- sapply( xseq , function(x) PCI(logistic(p$a+p$b*x)) )
lines( xseq , pi.mu )
shade( pi.ci , xseq )
#####
# latent bounded parameters
y <- rnorm(10)
m <- quap(
alist(
y ~ dnorm(mu,sigma),
mu ~ dnorm(0,1),
sigma ~ dexp(1)
) , data=list(y=y) , latent_bounded=TRUE )
m2 <- quap(
alist(
y ~ dnorm(mu,sigma),
mu ~ dnorm(0,1),
sigma ~ dexp(1)
) , data=list(y=y) , latent_bounded=FALSE )
mu <- quap(
alist(
y ~ dnorm(mu,sigma),
mu ~ dnorm(0,1),
sigma ~ dunif(0,10)
) , data=list(y=y) , latent_bounded=TRUE )
mu2 <- quap(
alist(
y ~ dnorm(mu,sigma),
mu ~ dnorm(0,1),
sigma ~ dunif(0,10)
) , data=list(y=y) , latent_bounded=FALSE )
} #EXAMPLES
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.