# Created by use_targets().
# Follow the comments below to fill in this target script.
# Then follow the manual to check and run the pipeline:
# https://books.ropensci.org/targets/walkthrough.html#inspect-the-pipeline # nolint
# Load packages required to define the pipeline:
library(targets)
# Set target options:
targets::tar_option_set(
packages = c("tima"),
imports = c("tima"),
memory = "auto",
garbage_collection = TRUE
)
# tar_make_clustermq() configuration (okay to leave alone):
# tar_make_future() configuration (okay to leave alone):
# Install packages {{future}}, {{future.callr}}, and {{future.batchtools}}
# to allow use_targets() to configure tar_make_future() options.
# Run the R scripts in the R/ folder with your custom functions:
targets::tar_source(
files = list.files(
path = system.file("R", package = "tima"),
pattern = ".R$",
full.names = TRUE
)
)
# Replace the target list below with your own:
list(
## Architecture
list(
## Paths
list(
tar_target(
name = yaml_paths,
command = {
yaml_paths <- system.file("paths.yaml", package = "tima")
},
format = "file"
),
tar_target(
name = paths,
command = {
paths <- get_default_paths(yaml = yaml_paths)
},
format = "rds"
)
)
),
## Params
list(
## Default
list(
tar_target(
name = par_def_ann_mas,
command = {
par_def_ann_mas <- system.file(
"params/default/annotate_masses.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_ann_spe,
command = {
par_def_ann_spe <- system.file(
"params/default/annotate_spectra.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_cre_com,
command = {
par_def_cre_com <- system.file(
"params/default/create_components.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_cre_edg_spe,
command = {
par_def_cre_edg_spe <- system.file(
"params/default/create_edges_spectra.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_fil_ann,
command = {
par_def_fil_ann <- system.file(
"params/default/filter_annotations.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_pre_ann_gnp,
command = {
par_def_pre_ann_gnp <- system.file(
"params/default/prepare_annotations_gnps.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_pre_ann_sir,
command = {
par_def_pre_ann_sir <- system.file(
"params/default/prepare_annotations_sirius.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_pre_ann_spe,
command = {
par_def_pre_ann_spe <- system.file(
"params/default/prepare_annotations_spectra.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_pre_fea_com,
command = {
par_def_pre_fea_com <- system.file(
"params/default/prepare_features_components.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_pre_fea_edg,
command = {
par_def_pre_fea_edg <- system.file(
"params/default/prepare_features_edges.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_pre_fea_tab,
command = {
par_def_pre_fea_tab <- system.file(
"params/default/prepare_features_tables.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_pre_lib_rt,
command = {
par_def_pre_lib_rt <- system.file(
"params/default/prepare_libraries_rt.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_pre_lib_sop_clo,
command = {
par_def_pre_lib_sop_clo <- system.file(
"params/default/prepare_libraries_sop_closed.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_pre_lib_sop_ecm,
command = {
par_def_pre_lib_sop_ecm <- system.file(
"params/default/prepare_libraries_sop_ecmdb.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_pre_lib_sop_hmd,
command = {
par_def_pre_lib_sop_hmd <- system.file(
"params/default/prepare_libraries_sop_hmdb.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_pre_lib_sop_lot,
command = {
par_def_pre_lib_sop_lot <- system.file(
"params/default/prepare_libraries_sop_lotus.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_pre_lib_sop_mer,
command = {
par_def_pre_lib_sop_mer <- system.file(
"params/default/prepare_libraries_sop_merged.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_pre_lib_spe,
command = {
par_def_pre_lib_spe <- system.file(
"params/default/prepare_libraries_spectra.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_pre_tax,
command = {
par_def_pre_tax <- system.file(
"params/default/prepare_taxa.yaml",
package = "tima"
)
},
format = "file"
),
tar_target(
name = par_def_wei_ann,
command = {
par_def_wei_ann <- system.file(
"params/default/weight_annotations.yaml",
package = "tima"
)
},
format = "file"
)
),
list(
## Prepare params
list(
tar_target(
name = par_pre_par,
command = {
par_pre_par <- paths$params$prepare_params
},
format = "file"
),
tar_target(
name = par_pre_par2,
command = {
par_pre_par2 <- paths$params$prepare_params_advanced
},
format = "file"
),
tar_target(
name = par_fin_par,
command = {
par_fin_par <- parse_yaml_params(
def = par_pre_par,
usr = par_pre_par
)
},
format = "rds"
),
tar_target(
name = par_fin_par2,
command = {
par_fin_par2 <- parse_yaml_params(
def = par_pre_par2,
usr = par_pre_par2
)
},
format = "rds"
)
),
## User
list(
tar_target(
name = par_usr_ann_mas,
command = {
par_usr_ann_mas <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "annotate_masses"
)
},
format = "file"
),
tar_target(
name = par_usr_ann_spe,
command = {
par_usr_ann_spe <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "annotate_spectra"
)
},
format = "file"
),
tar_target(
name = par_usr_cre_com,
command = {
par_usr_cre_com <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "create_components"
)
},
format = "file"
),
tar_target(
name = par_usr_fil_ann,
command = {
par_usr_fil_ann <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "filter_annotations"
)
},
format = "file"
),
tar_target(
name = par_usr_cre_edg_spe,
command = {
par_usr_cre_edg_spe <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "create_edges_spectra"
)
},
format = "file"
),
tar_target(
name = par_usr_pre_ann_gnp,
command = {
par_usr_pre_ann_gnp <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "prepare_annotations_gnps"
)
},
format = "file"
),
tar_target(
name = par_usr_pre_ann_sir,
command = {
par_usr_pre_ann_sir <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "prepare_annotations_sirius"
)
},
format = "file"
),
tar_target(
name = par_usr_pre_ann_spe,
command = {
par_usr_pre_ann_spe <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "prepare_annotations_spectra"
)
},
format = "file"
),
tar_target(
name = par_usr_pre_fea_com,
command = {
par_usr_pre_fea_com <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "prepare_features_components"
)
},
format = "file"
),
tar_target(
name = par_usr_pre_fea_edg,
command = {
par_usr_pre_fea_edg <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "prepare_features_edges"
)
},
format = "file"
),
tar_target(
name = par_usr_pre_fea_tab,
command = {
par_usr_pre_fea_tab <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "prepare_features_tables"
)
},
format = "file"
),
tar_target(
name = par_usr_pre_lib_rt,
command = {
par_usr_pre_lib_rt <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "prepare_libraries_rt"
)
},
format = "file"
),
tar_target(
name = par_usr_pre_lib_sop_clo,
command = {
par_usr_pre_lib_sop_clo <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "prepare_libraries_sop_closed"
)
},
format = "file"
),
tar_target(
name = par_usr_pre_lib_sop_ecm,
command = {
par_usr_pre_lib_sop_ecm <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "prepare_libraries_sop_ecmdb"
)
},
format = "file"
),
tar_target(
name = par_usr_pre_lib_sop_hmd,
command = {
par_usr_pre_lib_sop_hmd <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "prepare_libraries_sop_hmdb"
)
},
format = "file"
),
tar_target(
name = par_usr_pre_lib_sop_lot,
command = {
par_usr_pre_lib_sop_lot <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "prepare_libraries_sop_lotus"
)
},
format = "file"
),
tar_target(
name = par_usr_pre_lib_sop_mer,
command = {
par_usr_pre_lib_sop_mer <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "prepare_libraries_sop_merged"
)
},
format = "file"
),
tar_target(
name = par_usr_pre_lib_spe,
command = {
par_usr_pre_lib_spe <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "prepare_libraries_spectra"
)
},
format = "file"
),
tar_target(
name = par_usr_pre_tax,
command = {
par_usr_pre_tax <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "prepare_taxa"
)
},
format = "file"
),
tar_target(
name = par_usr_wei_ann,
command = {
par_usr_wei_ann <-
prepare_params(
params_small = par_fin_par,
params_advanced = par_fin_par2,
step = "weight_annotations"
)
},
format = "file"
)
)
),
## Final
list(
tar_target(
name = par_ann_mas,
command = {
par_ann_mas <-
parse_yaml_params(
def = par_def_ann_mas,
usr = par_usr_ann_mas[[1]]
)
},
format = "rds"
),
tar_target(
name = par_ann_spe,
command = {
par_ann_spe <-
parse_yaml_params(
def = par_def_ann_spe,
usr = par_usr_ann_spe[[1]]
)
},
format = "rds"
),
tar_target(
name = par_cre_com,
command = {
par_cre_com <-
parse_yaml_params(
def = par_def_cre_com,
usr = par_usr_cre_com[[1]]
)
},
format = "rds"
),
tar_target(
name = par_cre_edg_spe,
command = {
par_cre_edg_spe <-
parse_yaml_params(
def = par_def_cre_edg_spe,
usr = par_usr_cre_edg_spe[[1]]
)
},
format = "rds"
),
tar_target(
name = par_fil_ann,
command = {
par_fil_ann <-
parse_yaml_params(
def = par_def_fil_ann,
usr = par_usr_fil_ann[[1]]
)
},
format = "rds"
),
tar_target(
name = par_pre_ann_gnp,
command = {
par_pre_ann_gnp <-
parse_yaml_params(
def = par_def_pre_ann_gnp,
usr = par_usr_pre_ann_gnp[[1]]
)
},
format = "rds"
),
tar_target(
name = par_pre_ann_sir,
command = {
par_pre_ann_sir <-
parse_yaml_params(
def = par_def_pre_ann_sir,
usr = par_usr_pre_ann_sir[[1]]
)
},
format = "rds"
),
tar_target(
name = par_pre_ann_spe,
command = {
par_pre_ann_spe <-
parse_yaml_params(
def = par_def_pre_ann_spe,
usr = par_usr_pre_ann_spe[[1]]
)
},
format = "rds"
),
tar_target(
name = par_pre_fea_com,
command = {
par_pre_fea_com <-
parse_yaml_params(
def = par_def_pre_fea_com,
usr = par_usr_pre_fea_com[[1]]
)
},
format = "rds"
),
tar_target(
name = par_pre_fea_edg,
command = {
par_pre_fea_edg <-
parse_yaml_params(
def = par_def_pre_fea_edg,
usr = par_usr_pre_fea_edg[[1]]
)
},
format = "rds"
),
tar_target(
name = par_pre_fea_tab,
command = {
par_pre_fea_tab <-
parse_yaml_params(
def = par_def_pre_fea_tab,
usr = par_usr_pre_fea_tab[[1]]
)
},
format = "rds"
),
tar_target(
name = par_pre_lib_rt,
command = {
par_pre_lib_rt <-
parse_yaml_params(
def = par_def_pre_lib_rt,
usr = par_usr_pre_lib_rt[[1]]
)
},
format = "rds"
),
tar_target(
name = par_pre_lib_sop_clo,
command = {
par_pre_lib_sop_clo <-
parse_yaml_params(
def = par_def_pre_lib_sop_clo,
usr = par_usr_pre_lib_sop_clo[[1]]
)
},
format = "rds"
),
tar_target(
name = par_pre_lib_sop_ecm,
command = {
par_pre_lib_sop_ecm <-
parse_yaml_params(
def = par_def_pre_lib_sop_ecm,
usr = par_usr_pre_lib_sop_ecm[[1]]
)
},
format = "rds"
),
tar_target(
name = par_pre_lib_sop_hmd,
command = {
par_pre_lib_sop_hmd <-
parse_yaml_params(
def = par_def_pre_lib_sop_hmd,
usr = par_usr_pre_lib_sop_hmd[[1]]
)
},
format = "rds"
),
tar_target(
name = par_pre_lib_sop_lot,
command = {
par_pre_lib_sop_lot <-
parse_yaml_params(
def = par_def_pre_lib_sop_lot,
usr = par_usr_pre_lib_sop_lot[[1]]
)
},
format = "rds"
),
tar_target(
name = par_pre_lib_sop_mer,
command = {
par_pre_lib_sop_mer <-
parse_yaml_params(
def = par_def_pre_lib_sop_mer,
usr = par_usr_pre_lib_sop_mer[[1]]
)
},
format = "rds"
),
tar_target(
name = par_pre_lib_spe,
command = {
par_pre_lib_spe <-
parse_yaml_params(
def = par_def_pre_lib_spe,
usr = par_usr_pre_lib_spe[[1]]
)
},
format = "rds"
),
tar_target(
name = par_pre_tax,
command = {
par_pre_tax <-
parse_yaml_params(
def = par_def_pre_tax,
usr = par_usr_pre_tax[[1]]
)
},
format = "rds"
),
tar_target(
name = par_wei_ann,
command = {
par_wei_ann <-
parse_yaml_params(
def = par_def_wei_ann,
usr = par_usr_wei_ann[[1]]
)
},
format = "rds"
)
)
),
## Inputs
list(
tar_target(
name = par_pre_fea_tab_fil_fea_raw,
command = {
par_pre_fea_tab_fil_fea_raw <- par_pre_fea_tab$files$features$raw
},
format = "file"
),
tar_target(
name = input_features,
command = {
input_features <- par_pre_fea_tab_fil_fea_raw
# input_features <-
# ifelse(
# test = !is.null(gnps_features),
# yes = ifelse(test = file.exists(gnps_features),
# yes = gnps_features,
# no = par_pre_tax$files$features$raw
# ),
# no = par_pre_tax$files$features$raw
# )
},
format = "file"
),
tar_target(
name = par_ann_spe_fil_spe_raw,
command = {
par_ann_spe_fil_spe_raw <- par_ann_spe$files$spectral$raw
},
format = "file"
),
tar_target(
name = input_spectra,
command = {
input_spectra <-
ifelse(
test = paths$test$mode == FALSE,
yes = par_ann_spe_fil_spe_raw,
# yes = ifelse(
# test = !is.null(gnps_spectra),
# yes =
# ifelse(
# test = file.exists(gnps_spectra),
# yes = gnps_spectra,
# no = par_ann_spe$files$spectral$raw
# ),
# no = par_ann_spe$files$spectral$raw
# ),
no = {
get_file(
url = paths$urls$examples$spectra$mini,
export = paths$data$source$spectra
)
}
)
},
format = "file"
)
),
## libraries
list(
## Spectra
list(
## In silico
list(
## TODO ADD ISDB HMDB,
tar_target(
name = lib_spe_is_wik_pre_pos,
command = {
lib_spe_is_wik_pre_pos <-
get_file(
url = paths$urls$spectra$pos$isdb,
export = paths$data$interim$libraries$spectra$is$pos$isdb
)
},
format = "file"
),
tar_target(
name = lib_spe_is_wik_pre_neg,
command = {
lib_spe_is_wik_pre_neg <-
get_file(
url = paths$urls$spectra$neg$isdb,
export = paths$data$interim$libraries$spectra$is$neg$isdb
)
},
format = "file"
),
## TODO ADD IS HMDB PREPARED
tar_target(
name = lib_spe_is_wik_pre_sop,
command = {
lib_spe_is_wik_pre_sop <- get_file(
url = paths$urls$sop$isdb,
export = paths$data$interim$libraries$sop$isdb
)
},
format = "file"
)
),
## Experimental
list(
## RAW
list(
### Internal
## This does not work as it forces the file to exist.
## So targets will not check if the input file changed automatically.
# tar_target(
# name = lib_spe_exp_int_raw,
# command = {
# lib_spe_exp_int_raw <-
# par_pre_lib_spe$files$libraries$spectral$exp$raw
# }
# ),
### GNPS
tar_target(
name = lib_spe_exp_gnp_pre_pos,
command = {
lib_spe_exp_gnp_pre_pos <-
get_file(
url = paths$urls$spectra$pos$gnps,
export = paths$data$interim$libraries$spectra$exp$pos$gnps
)
},
format = "file"
),
tar_target(
name = lib_spe_exp_gnp_pre_neg,
command = {
lib_spe_exp_gnp_pre_neg <-
get_file(
url = paths$urls$spectra$neg$gnps,
export = paths$data$interim$libraries$spectra$exp$neg$gnps
)
},
format = "file"
),
tar_target(
name = lib_spe_exp_gnp_pre_sop,
command = {
lib_spe_exp_gnp_pre_sop <-
get_file(
url = paths$urls$sop$gnps,
export = paths$data$interim$libraries$sop$gnps
)
},
format = "file"
),
### MassBank
tar_target(
name = lib_spe_exp_mb_pre_pos,
command = {
lib_spe_exp_mb_pre_pos <-
get_file(
url = paths$urls$spectra$pos$massbank,
export = paths$data$interim$libraries$spectra$exp$pos$massbank
)
},
format = "file"
),
tar_target(
name = lib_spe_exp_mb_pre_neg,
command = {
lib_spe_exp_mb_pre_neg <-
get_file(
url = paths$urls$spectra$neg$massbank,
export = paths$data$interim$libraries$spectra$exp$neg$massbank
)
},
format = "file"
),
tar_target(
name = lib_spe_exp_mb_pre_sop,
command = {
lib_spe_exp_mb_pre_sop <-
get_file(
url = paths$urls$sop$massbank,
export = paths$data$interim$libraries$sop$massbank
)
},
format = "file"
),
### Merlin
tar_target(
name = lib_spe_exp_mer_pre_pos,
command = {
lib_spe_exp_mer_pre_pos <-
get_file(
url = paths$urls$spectra$pos$merlin,
export = paths$data$interim$libraries$spectra$exp$pos$merlin
)
},
format = "file"
),
tar_target(
name = lib_spe_exp_mer_pre_neg,
command = {
lib_spe_exp_mer_pre_neg <-
get_file(
url = paths$urls$spectra$neg$merlin,
export = paths$data$interim$libraries$spectra$exp$neg$merlin
)
},
format = "file"
),
tar_target(
name = lib_spe_exp_mer_pre_sop,
command = {
lib_spe_exp_mer_pre_sop <-
get_file(
url = paths$urls$sop$merlin,
export = paths$data$interim$libraries$sop$merlin
)
},
format = "file"
)
),
## Prepared
list(
tar_target(
name = lib_spe_exp_int_pre,
command = {
lib_spe_exp_int_pre <-
prepare_libraries_spectra(
input = par_pre_lib_spe$files$libraries$spectral$raw,
nam_lib = par_pre_lib_spe$names$libraries,
col_ad = par_pre_lib_spe$names$mgf$adduct,
col_ce = par_pre_lib_spe$names$mgf$collision_energy,
col_ci = par_pre_lib_spe$names$mgf$compound_id,
col_em = par_pre_lib_spe$names$mgf$exact_mass,
col_in = par_pre_lib_spe$names$mgf$inchi,
col_io = par_pre_lib_spe$names$mgf$inchi_no_stereo,
col_ik = par_pre_lib_spe$names$mgf$inchikey,
col_il = par_pre_lib_spe$names$mgf$inchikey_connectivity_layer,
col_mf = par_pre_lib_spe$names$mgf$molecular_formula,
col_na = par_pre_lib_spe$names$mgf$name,
col_po = par_pre_lib_spe$names$mgf$polarity,
col_sm = par_pre_lib_spe$names$mgf$smiles,
col_sn = par_pre_lib_spe$names$mgf$smiles_no_stereo,
col_si = par_pre_lib_spe$names$mgf$spectrum_id,
col_sp = par_pre_lib_spe$names$mgf$splash,
col_sy = par_pre_lib_spe$names$mgf$synonyms,
col_xl = par_pre_lib_spe$names$mgf$xlogp
)
},
format = "rds"
),
tar_target(
name = lib_spe_exp_int_pre_pos,
command = {
lib_spe_exp_int_pre_pos <- lib_spe_exp_int_pre[[1]]
},
format = "file"
),
tar_target(
name = lib_spe_exp_int_pre_neg,
command = {
lib_spe_exp_int_pre_neg <- lib_spe_exp_int_pre[[2]]
},
format = "file"
),
tar_target(
name = lib_spe_exp_int_pre_sop,
command = {
lib_spe_exp_int_pre_sop <- lib_spe_exp_int_pre[[3]]
},
format = "file"
)
)
)
),
## Retention times
list(
tar_target(
name = lib_rt,
command = {
lib_rt <- prepare_libraries_rt(
mgf_exp = par_pre_lib_rt$files$libraries$temporal$exp$mgf,
mgf_is = par_pre_lib_rt$files$libraries$temporal$is$mgf,
temp_exp = par_pre_lib_rt$files$libraries$temporal$exp$csv,
temp_is = par_pre_lib_rt$files$libraries$temporal$is$csv,
output_rt = par_pre_lib_rt$files$libraries$temporal$prepared,
output_sop = par_pre_lib_rt$files$libraries$sop$prepared$rt,
col_ik = par_pre_lib_rt$names$mgf$inchikey,
col_rt = par_pre_lib_rt$names$mgf$retention_time,
col_sm = par_pre_lib_rt$names$mgf$smiles,
name_inchikey = par_pre_lib_rt$names$inchikey,
name_rt = par_pre_lib_rt$names$rt$library,
name_smiles = par_pre_lib_rt$names$smiles,
unit_rt = par_pre_lib_rt$units$rt
)
},
format = "file"
)
),
tar_target(
name = lib_rt_rts,
command = {
lib_rt_rts <- lib_rt[[1]]
},
format = "file"
),
tar_target(
name = lib_rt_sop,
command = {
lib_rt_sop <- lib_rt[[2]]
},
format = "file"
),
## Structure organism pairs
list(
## Raw
list(
## This does not work as it forces the file to exist.
## So targets will not check if the input file changed automatically.
# tar_target(
# name = lib_sop_clo,
# command = {
# lib_sop_clo <- paths$data$source$libraries$sop$closed
# }
# ),
tar_target(
name = lib_sop_ecm,
command = {
## Because ECMDB certificate is expired
lib_sop_ecm <- tryCatch(
expr = {
get_file(
url = paths$urls$ecmdb$metabolites,
export = paths$data$source$libraries$sop$ecmdb
)
},
error = function(e) {
fake_ecmdb(
export = paths$data$source$libraries$sop$ecmdb
)
},
finally = {
paths$data$source$libraries$sop$ecmdb
}
)
},
format = "file"
),
tar_target(
name = lib_sop_hmd,
command = {
lib_sop_hmd <- tryCatch(
expr = {
get_file(
url = paths$urls$hmdb$structures,
export = paths$data$source$libraries$sop$hmdb
)
},
warning = function(w) {
## See #118
logger::log_warn(
"HMDB download failed partially, returning empty file instead"
)
unlink(paths$data$source$libraries$sop$hmdb)
fake_hmdb(
export = paths$data$source$libraries$sop$hmdb
)
},
error = function(e) {
fake_hmdb(
export = paths$data$source$libraries$sop$hmdb
)
},
finally = {
paths$data$source$libraries$sop$hmdb
}
)
},
format = "file"
),
## TODO ADD GET HMDB
tar_target(
name = lib_sop_lot,
command = {
lib_sop_lot <- tryCatch(
expr = {
get_last_version_from_zenodo(
doi = paths$urls$lotus$doi,
pattern = paths$urls$lotus$pattern,
path = paths$data$source$libraries$sop$lotus
)
},
error = function(e) {
fake_lotus(
export = paths$data$source$libraries$sop$lotus
)
},
finally = {
paths$data$source$libraries$sop$lotus
}
)
},
format = "file"
)
),
## Prepared
list(
tar_target(
name = lib_sop_clo_pre,
command = {
lib_sop_clo_pre <-
prepare_libraries_sop_closed(
input = par_pre_lib_sop_clo$files$libraries$sop$raw$closed,
output = par_pre_lib_sop_clo$files$libraries$sop$prepared$closed
)
},
format = "file"
),
tar_target(
name = lib_sop_ecm_pre,
command = {
lib_sop_ecm_pre <-
prepare_libraries_sop_ecmdb(
input = lib_sop_ecm,
output = par_pre_lib_sop_ecm$files$libraries$sop$prepared$ecmdb
)
},
format = "file"
),
tar_target(
name = lib_sop_hmd_pre,
command = {
lib_sop_hmd_pre <-
prepare_libraries_sop_hmdb(
input = lib_sop_hmd,
output = par_pre_lib_sop_hmd$files$libraries$sop$prepared$hmdb
)
},
format = "file"
),
tar_target(
name = lib_sop_lot_pre,
command = {
lib_sop_lot_pre <-
prepare_libraries_sop_lotus(
input = if (paths$test$mode == FALSE) {
lib_sop_lot
} else {
paths$data$source$libraries$sop$lotus
},
output = par_pre_lib_sop_lot$files$libraries$sop$prepared$lotus
)
},
format = "file"
)
),
## Merged
list(
tar_target(
name = lib_sop_mer_str_pro,
command = {
lib_sop_mer_str_pro <- get_file(
url = paths$urls$examples$structures_processed,
export = par_pre_lib_sop_mer$files$libraries$sop$merged$structures$processed
)
},
format = "file"
),
tar_target(
name = lib_sop_mer,
command = {
lib_sop_mer <- prepare_libraries_sop_merged(
files = c(
lib_sop_clo_pre,
lib_sop_ecm_pre,
lib_sop_hmd_pre,
lib_sop_lot_pre,
lib_rt_sop,
lib_spe_exp_int_pre_sop,
lib_spe_exp_gnp_pre_sop,
lib_spe_exp_mb_pre_sop,
lib_spe_exp_mer_pre_sop,
lib_spe_is_wik_pre_sop
),
filter = par_pre_lib_sop_mer$organisms$filter$mode,
level = par_pre_lib_sop_mer$organisms$filter$level,
value = par_pre_lib_sop_mer$organisms$filter$value,
cache = lib_sop_mer_str_pro,
output_key = par_pre_lib_sop_mer$files$libraries$sop$merged$keys,
output_org_tax_ott = par_pre_lib_sop_mer$files$libraries$sop$merged$organisms$taxonomies$ott,
output_str_stereo = par_pre_lib_sop_mer$files$libraries$sop$merged$structures$stereo,
output_str_met = par_pre_lib_sop_mer$files$libraries$sop$merged$structures$metadata,
output_str_nam = par_pre_lib_sop_mer$files$libraries$sop$merged$structures$names,
output_str_tax_cla = par_pre_lib_sop_mer$files$libraries$sop$merged$structures$taxonomies$cla,
output_str_tax_npc = par_pre_lib_sop_mer$files$libraries$sop$merged$structures$taxonomies$npc
)
},
format = "rds"
),
tar_target(
name = lib_mer_key,
command = {
lib_mer_key <- lib_sop_mer[[1]]
},
format = "file"
),
tar_target(
name = lib_mer_org_tax_ott,
command = {
lib_mer_org_tax_ott <- lib_sop_mer[[2]]
},
format = "file"
),
tar_target(
name = lib_mer_str_stereo,
command = {
lib_mer_str_stereo <- lib_sop_mer[[3]]
},
format = "file"
),
tar_target(
name = lib_mer_str_met,
command = {
lib_mer_str_met <- lib_sop_mer[[4]]
},
format = "file"
),
tar_target(
name = lib_mer_str_nam,
command = {
lib_mer_str_nam <- lib_sop_mer[[5]]
},
format = "file"
),
tar_target(
name = lib_mer_str_tax_cla,
command = {
lib_mer_str_tax_cla <- lib_sop_mer[[6]]
},
format = "file"
),
tar_target(
name = lib_mer_str_tax_npc,
command = {
lib_mer_str_tax_npc <- lib_sop_mer[[7]]
},
format = "file"
)
)
)
),
## Annotations
list(
## MS1
list(
tar_target(
name = ann_ms1_pre,
command = {
ann_ms1_pre <-
annotate_masses(
features = fea_pre,
library = lib_mer_key,
output_annotations = par_ann_mas$files$annotations$prepared$structural$ms1,
output_edges = par_ann_mas$files$networks$spectral$edges$raw,
name_source = par_ann_mas$names$source,
name_target = par_ann_mas$names$target,
str_stereo = lib_mer_str_stereo,
str_met = lib_mer_str_met,
str_nam = lib_mer_str_nam,
str_tax_cla = lib_mer_str_tax_cla,
str_tax_npc = lib_mer_str_tax_npc,
adducts_list = par_ann_mas$ms$adducts,
clusters_list = par_ann_mas$ms$clusters,
neutral_losses_list = par_ann_mas$ms$neutral_losses,
ms_mode = par_ann_mas$ms$polarity,
tolerance_ppm = par_ann_mas$ms$tolerances$mass$ppm$ms1,
tolerance_rt = par_ann_mas$ms$tolerances$rt$adducts
)
},
format = "rds"
),
tar_target(
name = ann_ms1_pre_ann,
command = {
ann_ms1_pre_ann <-
ann_ms1_pre[[1]]
},
format = "file"
),
tar_target(
name = ann_ms1_pre_edg,
command = {
ann_ms1_pre_edg <- ann_ms1_pre[[2]]
},
format = "file"
)
),
## Spectral
list(
## GNPS
list(
tar_target(
name = ann_spe_exp_gnp_pre,
command = {
ann_spe_exp_gnp_pre <-
prepare_annotations_gnps(
# input = gnps_annotations,
input = par_pre_ann_gnp$files$annotations$raw$spectral$gnps,
output = par_pre_ann_gnp$files$annotations$prepared$structural$gnps,
str_stereo = lib_mer_str_stereo,
str_met = lib_mer_str_met,
str_nam = lib_mer_str_nam,
str_tax_cla = lib_mer_str_tax_cla,
str_tax_npc = lib_mer_str_tax_npc
)
},
format = "file"
)
),
## Classic
list(
## TODO improve polarity handling, suboptimal
tar_target(
name = ann_spe_pos,
command = {
ann_spe_pos <- annotate_spectra(
input = input_spectra,
libraries = c(
lib_spe_is_wik_pre_pos,
## TODO add is hmdb
lib_spe_exp_int_pre_pos,
lib_spe_exp_gnp_pre_pos,
lib_spe_exp_mb_pre_pos,
lib_spe_exp_mer_pre_pos
),
polarity = "pos",
output = gsub(
pattern = ".tsv.gz",
replacement = "_pos.tsv.gz",
x = par_ann_spe$files$annotations$raw$spectral$spectral,
fixed = TRUE
),
method = par_ann_spe$similarities$methods$annotations,
threshold = par_ann_spe$similarities$thresholds$annotations,
ppm = par_ann_spe$ms$tolerances$mass$ppm$ms2,
dalton = par_ann_spe$ms$tolerances$mass$dalton$ms2,
qutoff = par_ann_spe$ms$thresholds$ms2$intensity,
approx = par_ann_spe$annotations$ms2approx
)
},
format = "file"
),
tar_target(
name = ann_spe_neg,
command = {
ann_spe_neg <- annotate_spectra(
input = input_spectra,
libraries = c(
lib_spe_is_wik_pre_neg,
## TODO add is hmdb
lib_spe_exp_int_pre_neg,
lib_spe_exp_gnp_pre_neg,
lib_spe_exp_mb_pre_neg,
lib_spe_exp_mer_pre_neg
),
polarity = "neg",
output = gsub(
pattern = ".tsv.gz",
replacement = "_neg.tsv.gz",
x = par_ann_spe$files$annotations$raw$spectral$spectral,
fixed = TRUE
),
method = par_ann_spe$similarities$methods$annotations,
threshold = par_ann_spe$similarities$thresholds$annotations,
ppm = par_ann_spe$ms$tolerances$mass$ppm$ms2,
dalton = par_ann_spe$ms$tolerances$mass$dalton$ms2,
qutoff = par_ann_spe$ms$thresholds$ms2$intensity,
approx = par_ann_spe$annotations$ms2approx
)
},
format = "file"
),
tar_target(
name = ann_spe_pre,
command = {
ann_spe_pre <- prepare_annotations_spectra(
input = c(
ann_spe_neg,
ann_spe_pos
),
output = par_pre_ann_spe$files$annotations$prepared$structural$spectral,
str_stereo = lib_mer_str_stereo,
str_met = lib_mer_str_met,
str_nam = lib_mer_str_nam,
str_tax_cla = lib_mer_str_tax_cla,
str_tax_npc = lib_mer_str_tax_npc
)
},
format = "file"
)
)
),
# SIRIUS
tar_target(
name = ann_sir_pre,
command = {
ann_sir_pre <-
prepare_annotations_sirius(
input_directory = par_pre_ann_sir$files$annotations$raw$sirius,
output_ann = par_pre_ann_sir$files$annotations$prepared$structural$sirius,
output_can = par_pre_ann_sir$files$annotations$prepared$canopus,
output_for = par_pre_ann_sir$files$annotations$prepared$formula,
sirius_version = par_pre_ann_sir$tools$sirius$version,
str_stereo = lib_mer_str_stereo,
str_met = lib_mer_str_met,
str_nam = lib_mer_str_nam,
str_tax_cla = lib_mer_str_tax_cla,
str_tax_npc = lib_mer_str_tax_npc
)
},
format = "rds"
),
tar_target(
name = ann_sir_pre_can,
command = {
ann_sir_pre_can <- ann_sir_pre[[1]]
},
format = "file"
),
tar_target(
name = ann_sir_pre_for,
command = {
ann_sir_pre_for <- ann_sir_pre[[2]]
},
format = "file"
),
tar_target(
name = ann_sir_pre_str,
command = {
ann_sir_pre_str <- ann_sir_pre[[3]]
},
format = "file"
),
list()
),
## Features
list(
tar_target(
name = fea_edg_spe,
command = {
fea_edg_spe <- create_edges_spectra(
input = input_spectra,
output = par_cre_edg_spe$files$networks$spectral$edges$raw,
name_source = par_cre_edg_spe$names$source,
name_target = par_cre_edg_spe$names$target,
method = par_cre_edg_spe$similarities$methods$edges,
threshold = par_cre_edg_spe$similarities$thresholds$edges,
ppm = par_cre_edg_spe$ms$tolerances$mass$ppm$ms2,
dalton = par_cre_edg_spe$ms$tolerances$mass$dalton$ms2,
qutoff = par_cre_edg_spe$ms$thresholds$ms2$intensity
)
},
format = "file"
),
tar_target(
name = fea_com,
command = {
fea_com <- create_components(
input = fea_edg_pre,
output = par_cre_com$files$networks$spectral$components$raw
)
},
format = "file"
),
## Interim
list(
tar_target(
name = int_com,
command = {
int_com <- fea_com
# int_com <-
# if (file.exists(fea_com)) {
# fea_com
# } else {
# gnps_components
# }
},
format = "file"
),
tar_target(
name = edg_spe,
command = {
edg_spe <- fea_edg_spe
# edg_spe <-
# ifelse(test = file.exists(fea_edg_spe),
# yes = fea_edg_spe,
# no = gnps_edges
# )
},
format = "file"
)
),
tar_target(
name = fea_edg_pre,
command = {
fea_edg_pre <- prepare_features_edges(
input = c("ms1" = ann_ms1_pre_edg, "spectral" = edg_spe),
output = par_pre_fea_edg$files$networks$spectral$edges$prepared,
name_source = par_pre_fea_edg$names$source,
name_target = par_pre_fea_edg$names$target
)
},
format = "file"
),
tar_target(
name = fea_com_pre,
command = {
fea_com_pre <- prepare_features_components(
input = int_com,
output = par_pre_fea_com$files$networks$spectral$components$prepared
)
},
format = "file"
),
tar_target(
name = fea_pre,
command = {
fea_pre <- prepare_features_tables(
features = input_features,
output = par_pre_fea_tab$files$features$prepared,
candidates = par_pre_fea_tab$annotations$candidates$samples,
name_features = par_pre_fea_tab$names$features,
name_rt = par_pre_fea_tab$names$rt$features,
name_mz = par_pre_fea_tab$names$precursor
)
},
format = "file"
)
),
tar_target(
name = tax_pre,
command = {
tax_pre <- prepare_taxa(
input = fea_pre,
name_filename = par_pre_tax$names$filename,
extension = par_pre_tax$names$extension,
colname = par_pre_tax$names$taxon,
metadata = par_pre_tax$files$metadata$raw,
org_tax_ott = lib_mer_org_tax_ott,
output = par_pre_tax$files$metadata$prepared,
taxon = par_pre_tax$organisms$taxon
)
},
format = "file"
),
tar_target(
name = ann_fil,
command = {
ann_fil <- filter_annotations(
annotations = c(
"gnps" = ann_spe_exp_gnp_pre,
"spectral" = ann_spe_pre,
"sirius" = ann_sir_pre_str,
"ms1" = ann_ms1_pre_ann
),
features = fea_pre,
rts = lib_rt_rts,
output = par_fil_ann$files$annotations$filtered,
tolerance_rt = par_fil_ann$ms$tolerances$rt$library
)
},
format = "file"
),
tar_target(
name = ann_pre,
command = {
ann_pre <- weight_annotations(
library = lib_mer_key,
org_tax_ott = lib_mer_org_tax_ott,
str_stereo = lib_mer_str_stereo,
annotations = ann_fil,
canopus = ann_sir_pre_can,
formula = ann_sir_pre_for,
components = fea_com_pre,
edges = fea_edg_pre,
taxa = tax_pre,
output = par_wei_ann$files$annotations$processed,
candidates_final = par_wei_ann$annotations$candidates$final,
candidates_neighbors = par_wei_ann$annotations$candidates$neighbors,
weight_spectral = par_wei_ann$weights$global$spectral,
weight_chemical = par_wei_ann$weights$global$chemical,
weight_biological = par_wei_ann$weights$global$biological,
score_biological_domain = par_wei_ann$weights$biological$domain,
score_biological_kingdom = par_wei_ann$weights$biological$kingdom,
score_biological_phylum = par_wei_ann$weights$biological$phylum,
score_biological_class = par_wei_ann$weights$biological$class,
score_biological_order = par_wei_ann$weights$biological$order,
score_biological_infraorder = par_wei_ann$weights$biological$infraorder,
score_biological_family = par_wei_ann$weights$biological$family,
score_biological_subfamily = par_wei_ann$weights$biological$subfamily,
score_biological_tribe = par_wei_ann$weights$biological$tribe,
score_biological_subtribe = par_wei_ann$weights$biological$subtribe,
score_biological_genus = par_wei_ann$weights$biological$genus,
score_biological_subgenus = par_wei_ann$weights$biological$subgenus,
score_biological_species = par_wei_ann$weights$biological$species,
score_biological_subspecies = par_wei_ann$weights$biological$subspecies,
score_biological_variety = par_wei_ann$weights$biological$variety,
score_chemical_cla_kingdom = par_wei_ann$weights$chemical$cla$kingdom,
score_chemical_cla_superclass = par_wei_ann$weights$chemical$cla$superclass,
score_chemical_cla_class = par_wei_ann$weights$chemical$cla$class,
score_chemical_cla_parent = par_wei_ann$weights$chemical$cla$parent,
score_chemical_npc_pathway = par_wei_ann$weights$chemical$npc$pathway,
score_chemical_npc_superclass = par_wei_ann$weights$chemical$npc$superclass,
score_chemical_npc_class = par_wei_ann$weights$chemical$npc$class,
minimal_consistency = par_wei_ann$annotations$thresholds$consistency,
minimal_ms1_bio = par_wei_ann$annotations$thresholds$ms1$biological,
minimal_ms1_chemo = par_wei_ann$annotations$thresholds$ms1$chemical,
minimal_ms1_condition = par_wei_ann$annotations$thresholds$ms1$condition,
ms1_only = par_wei_ann$annotations$ms1only,
compounds_names = par_wei_ann$options$compounds_names,
high_confidence = par_wei_ann$options$high_confidence,
remove_ties = par_wei_ann$options$remove_ties,
summarize = par_wei_ann$options$summarize,
pattern = par_wei_ann$files$pattern,
force = par_wei_ann$options$force
)
},
format = "file"
),
list(
## Benchmark
tar_target(
name = benchmark_path_url,
command = {
benchmark_path_url <- paths$urls$benchmarking$set
}
),
tar_target(
name = benchmark_path_zip,
command = {
benchmark_path_zip <- paths$data$source$benchmark$zip
}
),
tar_target(
name = benchmark_path_file,
command = {
benchmark_path_file <- paths$data$source$benchmark$cleaned
}
),
tar_target(
name = benchmark_path_mgf_neg,
command = {
benchmark_path_mgf_neg <- paths$data$source$benchmark$mgf$neg
}
),
tar_target(
name = benchmark_path_mgf_pos,
command = {
benchmark_path_mgf_pos <- paths$data$source$benchmark$mgf$pos
}
),
tar_target(
name = benchmark_zip,
command = {
benchmark_zip <- get_file(
url = benchmark_path_url,
export = benchmark_path_zip
)
return(benchmark_path_zip)
}
),
tar_target(
name = benchmark_file,
command = {
utils::unzip(zipfile = benchmark_zip)
dir.create(dirname(benchmark_path_file), recursive = TRUE)
file.copy(
from = "cleaned_libraries_matchms/results_library_cleaning/cleaned_spectra.mgf",
to = benchmark_path_file
)
unlink("cleaned_libraries_matchms", recursive = TRUE)
return(benchmark_path_file)
}
),
tar_target(
name = benchmark_converted,
command = {
sp <- benchmark_file |>
import_spectra()
sp |>
Spectra::filterEmptySpectra() |>
extract_spectra() |>
data.frame() |>
saveRDS(file = "data/interim/benchmark/benchmark_spectra.rds")
return("data/interim/benchmark/benchmark_spectra.rds")
}
),
tar_target(
name = benchmark_prepared,
command = {
sp <- benchmark_converted |>
import_spectra()
sp@backend@spectraData$precursorMz <-
sp@backend@spectraData$PRECURSOR_MZ |>
as.numeric()
logger::log_trace("Imported")
sp_clean <- sp
logger::log_trace("Cleaned")
df_meta <- tidytable::tidytable(
adduct = sp_clean$ADDUCT,
inchikey = sp_clean$INCHIKEY,
instrument = sp_clean$INSTRUMENT_TYPE,
fragments = purrr::map(
.x = sp_clean@backend@peaksData,
.f = length
) |>
as.character() |>
as.numeric() /
2,
precursorMz = sp_clean$precursorMz,
smiles = sp_clean$SMILES,
ccmslib = sp_clean$SPECTRUM_ID,
charge = sp_clean$precursorCharge,
name = sp_clean$COMPOUND_NAME
) |>
tidytable::mutate(
tidytable::across(
.cols = tidyselect::everything(),
.fns = function(x) {
tidytable::na_if(x, "")
}
)
)
logger::log_trace("Framed")
df_clean <- df_meta |>
tidytable::filter(!is.na(inchikey)) |>
tidytable::filter(fragments >= 5) |>
tidytable::filter(fragments <= 250) |>
tidytable::filter(
!grepl(
pattern = "QQQ",
x = instrument,
fixed = TRUE
)
) |>
## fragments are nominal mass
tidytable::filter(
!grepl(
pattern = "ReSpect",
x = name,
fixed = TRUE
)
) |>
## remove spectral matches
tidytable::filter(
!grepl(
pattern = "Spectral Match to",
x = name,
fixed = TRUE
)
) |>
## remove putatives
tidytable::filter(
!grepl(
pattern = "putative",
x = name,
fixed = TRUE
)
) |>
tidytable::select(-name) |>
tidytable::mutate(mass = precursorMz) |>
tidytable::separate(
col = mass,
sep = "\\.",
into = c("a", "b")
) |>
tidytable::filter(!is.na(b)) |>
tidytable::filter(stringi::stri_length(as.numeric(b)) > 1) |>
tidytable::select(-a, -b) |>
tidytable::mutate(
inchikey_connectivity_layer = gsub(
pattern = "-.*",
replacement = "",
x = inchikey,
perl = TRUE
)
) |>
tidytable::distinct(
inchikey_connectivity_layer,
adduct,
.keep_all = TRUE
) |>
tidytable::mutate(mz = precursorMz) |>
## Weird way to have some kind of retention time
tidytable::mutate(
rt = tidytable::cur_group_id(),
.by = "inchikey_connectivity_layer"
)
df_clean_neg <- df_clean |>
tidytable::filter(grepl(
pattern = "]-",
x = adduct,
fixed = TRUE
))
df_clean_pos <- df_clean |>
tidytable::filter(grepl(
pattern = "]+",
x = adduct,
fixed = TRUE
))
sp_pos <-
sp_clean[sp_clean$SPECTRUM_ID %in% df_clean_pos$ccmslib]
sp_neg <-
sp_clean[sp_clean$SPECTRUM_ID %in% df_clean_neg$ccmslib]
extract_benchmark_spectra <- function(x, mode) {
df <- x |>
extract_spectra() |>
tidytable::mutate(acquisitionNum = tidytable::row_number()) |>
tidytable::mutate(spectrum_id = acquisitionNum) |>
tidytable::mutate(
short_ik = gsub(
pattern = "-.*",
replacement = "",
INCHIKEY,
perl = TRUE
)
) |>
tidytable::mutate(
rtime = tidytable::cur_group_id(),
.by = "short_ik"
) |>
tidytable::mutate(
precursorCharge = tidytable::if_else(
condition = mode == "pos",
true = as.integer(1),
false = as.integer(-1)
)
) |>
tidytable::select(
acquisitionNum,
precursorCharge,
precursorMz,
MS_LEVEL,
rtime,
name = COMPOUND_NAME,
smiles = SMILES,
inchi = INCHI,
inchikey = INCHIKEY,
adduct = ADDUCT,
instrument = INSTRUMENT_TYPE,
ccmslib = SPECTRUM_ID,
spectrum_id = acquisitionNum,
mz,
intensity
) |>
data.frame()
return(df)
}
spectra_harmonized_pos <- sp_pos |>
extract_benchmark_spectra(mode = "pos")
spectra_harmonized_neg <- sp_neg |>
extract_benchmark_spectra(mode = "neg")
select_benchmark_columns <- function(x) {
df <- x |>
tidytable::select(
adduct,
inchikey,
instrument,
smiles,
ccmslib,
charge = precursorCharge,
mz = precursorMz,
rt = rtime,
feature_id = spectrum_id
) |>
tidytable::mutate(
inchikey_connectivity_layer = gsub(
pattern = "-.*",
replacement = "",
x = inchikey,
perl = TRUE
)
) |>
data.frame()
return(df)
}
df_clean_pos <- spectra_harmonized_pos |>
select_benchmark_columns()
df_clean_neg <- spectra_harmonized_neg |>
select_benchmark_columns()
spectra_harmonized_pos |>
Spectra::Spectra() |>
Spectra::export(
backend = MsBackendMgf::MsBackendMgf(),
file = benchmark_path_mgf_pos
)
spectra_harmonized_neg |>
Spectra::Spectra() |>
Spectra::export(
backend = MsBackendMgf::MsBackendMgf(),
file = benchmark_path_mgf_neg
)
df_clean_pos |>
export_output("data/interim/benchmark/benchmark_meta_pos.tsv")
df_clean_neg |>
export_output("data/interim/benchmark/benchmark_meta_neg.tsv")
return(
c(
"spectra_pos" = benchmark_path_mgf_pos,
"spectra_neg" = benchmark_path_mgf_neg,
"meta_pos" = "data/interim/benchmark/benchmark_meta_pos.tsv",
"meta_neg" = "data/interim/benchmark/benchmark_meta_neg.tsv"
)
)
}
),
tar_target(
name = benchmark_pre_mgf_pos,
command = {
benchmark_pre_mgf_pos <- benchmark_prepared[[1]]
}
),
tar_target(
name = benchmark_pre_mgf_neg,
command = {
benchmark_pre_mgf_neg <- benchmark_prepared[[2]]
}
),
tar_target(
name = benchmark_pre_meta_pos,
command = {
benchmark_pre_meta_pos <- benchmark_prepared[[3]]
}
),
tar_target(
name = benchmark_pre_meta_neg,
command = {
benchmark_pre_meta_neg <- benchmark_prepared[[4]]
}
),
tar_target(
name = benchmark_taxed_pos,
command = {
benchmark_taxed_pos <- benchmark_pre_meta_pos |>
benchmark_taxize_spectra(
keys = lib_mer_key,
org_tax_ott = lib_mer_org_tax_ott,
output = "data/interim/benchmark/benchmark_taxed_pos.tsv.gz"
)
}
),
tar_target(
name = benchmark_taxed_neg,
command = {
benchmark_taxed_neg <- benchmark_pre_meta_neg |>
benchmark_taxize_spectra(
keys = lib_mer_key,
org_tax_ott = lib_mer_org_tax_ott,
output = "data/interim/benchmark/benchmark_taxed_neg.tsv.gz"
)
}
),
tar_target(
name = benchmark_def_ann_mas,
command = {
benchmark_def_ann_mas <- parse_yaml_params(
def = par_def_ann_mas,
usr = par_def_ann_mas
)
}
),
tar_target(
name = benchmark_ann_ms1_pre_pos,
command = {
benchmark_ann_ms1_pre_pos <-
annotate_masses(
features = benchmark_pre_meta_pos,
library = lib_mer_key,
output_annotations = "data/interim/benchmark/benchmark_ann_ms1_pos.tsv.gz",
output_edges = "data/interim/benchmark/benchmark_edges_ms1_pos.tsv.gz",
name_source = benchmark_def_ann_mas$names$source,
name_target = benchmark_def_ann_mas$names$target,
str_stereo = lib_mer_str_stereo,
str_met = lib_mer_str_met,
str_nam = lib_mer_str_nam,
str_tax_cla = lib_mer_str_tax_cla,
str_tax_npc = lib_mer_str_tax_npc,
adducts_list = par_ann_mas$ms$adducts,
clusters_list = par_ann_mas$ms$clusters,
neutral_losses_list = par_ann_mas$ms$neutral_losses,
ms_mode = "pos",
tolerance_ppm = benchmark_def_ann_mas$ms$tolerances$mass$ppm$ms1,
tolerance_rt = benchmark_def_ann_mas$ms$tolerances$rt$adducts
)
}
),
tar_target(
name = benchmark_ann_ms1_pre_neg,
command = {
benchmark_ann_ms1_pre_neg <-
annotate_masses(
features = benchmark_pre_meta_neg,
library = lib_mer_key,
output_annotations = "data/interim/benchmark/benchmark_ann_ms1_neg.tsv.gz",
output_edges = "data/interim/benchmark/benchmark_edges_ms1_neg.tsv.gz",
name_source = benchmark_def_ann_mas$names$source,
name_target = benchmark_def_ann_mas$names$target,
str_stereo = lib_mer_str_stereo,
str_met = lib_mer_str_met,
str_nam = lib_mer_str_nam,
str_tax_cla = lib_mer_str_tax_cla,
str_tax_npc = lib_mer_str_tax_npc,
adducts_list = par_ann_mas$ms$adducts,
clusters_list = par_ann_mas$ms$clusters,
neutral_losses_list = par_ann_mas$ms$neutral_losses,
ms_mode = "neg",
tolerance_ppm = benchmark_def_ann_mas$ms$tolerances$mass$ppm$ms1,
tolerance_rt = benchmark_def_ann_mas$ms$tolerances$rt$adducts
)
}
),
tar_target(
name = benchmark_def_cre_edg_spe,
command = {
benchmark_def_cre_edg_spe <- parse_yaml_params(
def = par_def_cre_edg_spe,
usr = par_def_cre_edg_spe
)
}
),
tar_target(
name = benchmark_edg_spe_pos,
command = {
benchmark_edg_spe_pos <- create_edges_spectra(
input = benchmark_pre_mgf_pos,
output = "data/interim/benchmark/benchmark_edges_spe_pos.tsv.gz",
name_source = benchmark_def_cre_edg_spe$names$source,
name_target = benchmark_def_cre_edg_spe$names$target,
threshold = benchmark_def_cre_edg_spe$annotations$thresholds$ms2$similarity$edges,
ppm = benchmark_def_cre_edg_spe$ms$tolerances$mass$ppm$ms2,
dalton = benchmark_def_cre_edg_spe$ms$tolerances$mass$dalton$ms2,
qutoff = 0
)
}
),
tar_target(
name = benchmark_edg_spe_neg,
command = {
benchmark_edg_spe_neg <- create_edges_spectra(
input = benchmark_pre_mgf_neg,
output = "data/interim/benchmark/benchmark_edges_spe_neg.tsv.gz",
name_source = benchmark_def_cre_edg_spe$names$source,
name_target = benchmark_def_cre_edg_spe$names$target,
threshold = benchmark_def_cre_edg_spe$annotations$thresholds$ms2$similarity$edges,
ppm = benchmark_def_cre_edg_spe$ms$tolerances$mass$ppm$ms2,
dalton = benchmark_def_cre_edg_spe$ms$tolerances$mass$dalton$ms2,
qutoff = 0
)
}
),
tar_target(
name = benchmark_def_pre_fea_edg,
command = {
benchmark_def_pre_fea_edg <- parse_yaml_params(
def = par_def_pre_fea_edg,
usr = par_def_pre_fea_edg
)
}
),
tar_target(
name = benchmark_edg_pre_pos,
command = {
benchmark_edg_pre_pos <- prepare_features_edges(
input = list(
"spectral" = benchmark_edg_spe_pos,
"ms1" = benchmark_ann_ms1_pre_pos[[2]]
),
output = "data/interim/benchmark/benchmark_edges_pos.tsv.gz",
name_source = benchmark_def_pre_fea_edg$names$source,
name_target = benchmark_def_pre_fea_edg$names$target
)
}
),
tar_target(
name = benchmark_edg_pre_neg,
command = {
benchmark_edg_pre_neg <- prepare_features_edges(
input = list(
"spectral" = benchmark_edg_spe_neg,
"ms1" = benchmark_ann_ms1_pre_neg[[2]]
),
output = "data/interim/benchmark/benchmark_edges_neg.tsv.gz",
name_source = benchmark_def_pre_fea_edg$names$source,
name_target = benchmark_def_pre_fea_edg$names$target
)
}
),
tar_target(
name = benchmark_def_cre_edg_com,
command = {
benchmark_def_cre_edg_com <- parse_yaml_params(
def = par_def_cre_com,
usr = par_def_cre_com
)
}
),
tar_target(
name = benchmark_com_pos,
command = {
benchmark_com_pos <- create_components(
input = benchmark_edg_pre_pos,
output = "data/interim/benchmark/benchmark_components_pos.tsv.gz"
)
}
),
tar_target(
name = benchmark_com_neg,
command = {
benchmark_com_neg <- create_components(
input = benchmark_edg_pre_neg,
output = "data/interim/benchmark/benchmark_components_neg.tsv.gz"
)
}
),
tar_target(
name = benchmark_def_pre_fea_com,
command = {
benchmark_def_pre_fea_com <- parse_yaml_params(
def = par_def_pre_fea_com,
usr = par_def_pre_fea_com
)
}
),
tar_target(
name = benchmark_com_pre_pos,
command = {
benchmark_com_pre_pos <- prepare_features_components(
input = benchmark_com_pos,
output = "data/interim/benchmark/benchmark_com_pre_pos.tsv.gz"
)
}
),
tar_target(
name = benchmark_com_pre_neg,
command = {
benchmark_com_pre_neg <- prepare_features_components(
input = benchmark_com_neg,
output = "data/interim/benchmark/benchmark_com_pre_neg.tsv.gz"
)
}
),
tar_target(
name = benchmark_def_ann_spe,
command = {
benchmark_def_ann_spe <- parse_yaml_params(
def = par_def_ann_spe,
usr = par_def_ann_spe
)
}
),
tar_target(
name = benchmark_ann_spe_pos,
command = {
benchmark_ann_spe_pos <- annotate_spectra(
input = benchmark_pre_mgf_pos,
libraries = c(
lib_spe_is_wik_pre_pos,
lib_spe_exp_mb_pre_pos,
lib_spe_exp_mer_pre_pos
),
polarity = "pos",
output = "data/interim/benchmark/benchmark_ann_spe_pos.tsv.gz",
method = benchmark_def_ann_spe$similarities$methods$annotations,
threshold = benchmark_def_ann_spe$similarities$thresholds$annotations,
ppm = benchmark_def_ann_spe$ms$tolerances$mass$ppm$ms2,
dalton = benchmark_def_ann_spe$ms$tolerances$mass$dalton$ms2,
qutoff = 0,
approx = benchmark_def_ann_spe$annotations$ms2approx
)
}
),
tar_target(
name = benchmark_ann_spe_neg,
command = {
benchmark_ann_spe_neg <- annotate_spectra(
input = benchmark_pre_mgf_neg,
libraries = c(
lib_spe_is_wik_pre_neg,
lib_spe_exp_mb_pre_neg,
lib_spe_exp_mer_pre_neg
),
polarity = "neg",
output = "data/interim/benchmark/benchmark_ann_spe_neg.tsv.gz",
method = benchmark_def_ann_spe$similarities$methods$annotations,
threshold = benchmark_def_ann_spe$similarities$thresholds$annotations,
ppm = benchmark_def_ann_spe$ms$tolerances$mass$ppm$ms2,
dalton = benchmark_def_ann_spe$ms$tolerances$mass$dalton$ms2,
qutoff = 0,
approx = benchmark_def_ann_spe$annotations$ms2approx
)
}
),
tar_target(
name = benchmark_def_pre_ann_spe,
command = {
benchmark_def_pre_ann_spe <- parse_yaml_params(
def = par_def_pre_ann_spe,
usr = par_def_pre_ann_spe
)
}
),
tar_target(
name = benchmark_ann_spe_pre_pos,
command = {
benchmark_ann_spe_pre_pos <- prepare_annotations_spectra(
input = c(benchmark_ann_spe_pos),
output = "data/interim/benchmark/benchmark_ann_spe_pre_pos.tsv.gz",
str_stereo = lib_mer_str_stereo,
str_met = lib_mer_str_met,
str_nam = lib_mer_str_nam,
str_tax_cla = lib_mer_str_tax_cla,
str_tax_npc = lib_mer_str_tax_npc
)
}
),
tar_target(
name = benchmark_ann_spe_pre_neg,
command = {
benchmark_ann_spe_pre_neg <- prepare_annotations_spectra(
input = c(benchmark_ann_spe_neg),
output = "data/interim/benchmark/benchmark_ann_spe_pre_neg.tsv.gz",
str_stereo = lib_mer_str_stereo,
str_met = lib_mer_str_met,
str_nam = lib_mer_str_nam,
str_tax_cla = lib_mer_str_tax_cla,
str_tax_npc = lib_mer_str_tax_npc
)
}
),
tar_target(
name = benchmark_def_pre_ann_sir,
command = {
benchmark_def_pre_ann_sir <- parse_yaml_params(
def = par_def_pre_ann_sir,
usr = par_def_pre_ann_sir
)
}
),
tar_target(
name = benchmark_ann_sir_pre,
command = {
benchmark_ann_sir_pre <-
prepare_annotations_sirius(
input_directory = "doesNotExist4Now",
output_ann = "data/interim/benchmark/benchmark_ann_sir_pre.tsv.gz",
output_can = "data/interim/benchmark/benchmark_ann_sir_pre_can.tsv.gz",
output_for = "data/interim/benchmark/benchmark_ann_sir_pre_for.tsv.gz",
str_stereo = lib_mer_str_stereo,
str_met = lib_mer_str_met,
str_nam = lib_mer_str_nam,
str_tax_cla = lib_mer_str_tax_cla,
str_tax_npc = lib_mer_str_tax_npc
)
}
),
tar_target(
name = benchmark_ann_sir_pre_can,
command = {
benchmark_ann_sir_pre_can <- benchmark_ann_sir_pre[[1]]
}
),
tar_target(
name = benchmark_ann_sir_pre_for,
command = {
benchmark_ann_sir_pre_for <- benchmark_ann_sir_pre[[2]]
}
),
tar_target(
name = benchmark_ann_sir_pre_str,
command = {
benchmark_ann_sir_pre_str <- benchmark_ann_sir_pre[[3]]
}
),
tar_target(
name = benchmark_def_fil_ann,
command = {
benchmark_def_fil_ann <- parse_yaml_params(
def = par_def_fil_ann,
usr = par_def_fil_ann
)
}
),
tar_target(
name = benchmark_ann_fil_spe_neg,
command = {
benchmark_ann_fil_spe_neg <- filter_annotations(
annotations = c(
benchmark_ann_spe_pre_neg,
benchmark_ann_sir_pre_str
),
features = benchmark_pre_meta_neg,
rts = list(),
output = "data/interim/benchmark/benchmark_ann_spe_fil_neg.tsv.gz",
tolerance_rt = benchmark_def_fil_ann$ms$tolerances$rt$library
)
}
),
tar_target(
name = benchmark_ann_fil_spe_ms1_neg,
command = {
benchmark_ann_fil_spe_ms1_neg <- filter_annotations(
annotations = c(
benchmark_ann_spe_pre_neg,
benchmark_ann_ms1_pre_neg[[1]],
benchmark_ann_sir_pre_str
),
features = benchmark_pre_meta_neg,
rts = list(),
output = "data/interim/benchmark/benchmark_ann_spe_ms1_fil_neg.tsv.gz",
tolerance_rt = benchmark_def_fil_ann$ms$tolerances$rt$library
)
}
),
tar_target(
name = benchmark_ann_fil_ms1_neg,
command = {
benchmark_ann_fil_ms1_neg <- filter_annotations(
annotations = c(
benchmark_ann_ms1_pre_neg[[1]],
benchmark_ann_sir_pre_str
),
features = benchmark_pre_meta_neg,
rts = list(),
output = "data/interim/benchmark/benchmark_ann_ms1_fil_neg.tsv.gz",
tolerance_rt = benchmark_def_fil_ann$ms$tolerances$rt$library
)
}
),
tar_target(
name = benchmark_ann_fil_spe_pos,
command = {
benchmark_ann_fil_spe_pos <- filter_annotations(
annotations = c(
benchmark_ann_spe_pre_pos,
benchmark_ann_sir_pre_str
),
features = benchmark_pre_meta_pos,
rts = list(),
output = "data/interim/benchmark/benchmark_ann_spe_fil_pos.tsv.gz",
tolerance_rt = benchmark_def_fil_ann$ms$tolerances$rt$library
)
}
),
tar_target(
name = benchmark_ann_fil_spe_ms1_pos,
command = {
benchmark_ann_fil_spe_ms1_pos <- filter_annotations(
annotations = c(
benchmark_ann_spe_pre_pos,
benchmark_ann_ms1_pre_pos[[1]],
benchmark_ann_sir_pre_str
),
features = benchmark_pre_meta_pos,
rts = list(),
output = "data/interim/benchmark/benchmark_ann_spe_ms1_fil_pos.tsv.gz",
tolerance_rt = benchmark_def_fil_ann$ms$tolerances$rt$library
)
}
),
tar_target(
name = benchmark_ann_fil_ms1_pos,
command = {
benchmark_ann_fil_ms1_pos <- filter_annotations(
annotations = c(
benchmark_ann_ms1_pre_pos[[1]],
benchmark_ann_sir_pre_str
),
features = benchmark_pre_meta_pos,
rts = list(),
output = "data/interim/benchmark/benchmark_ann_ms1_fil_pos.tsv.gz",
tolerance_rt = benchmark_def_fil_ann$ms$tolerances$rt$library
)
}
),
tar_target(
name = benchmark_def_wei_ann,
command = {
benchmark_def_wei_ann <- parse_yaml_params(
def = par_def_wei_ann,
usr = par_def_wei_ann
)
}
),
tar_target(
name = benchmark_wei_par,
command = {
benchmark_wei_par <- list(
canopus = benchmark_ann_sir_pre_can,
formula = benchmark_ann_sir_pre_for,
library = lib_mer_key,
org_tax_ott = lib_mer_org_tax_ott,
str_stereo = lib_mer_str_stereo,
candidates_final = 500,
score_biological_domain = benchmark_def_wei_ann$weights$biological$domain,
score_biological_kingdom = benchmark_def_wei_ann$weights$biological$kingdom,
score_biological_phylum = benchmark_def_wei_ann$weights$biological$phylum,
score_biological_class = benchmark_def_wei_ann$weights$biological$class,
score_biological_order = benchmark_def_wei_ann$weights$biological$order,
score_biological_infraorder = benchmark_def_wei_ann$weights$biological$infraorder,
score_biological_family = benchmark_def_wei_ann$weights$biological$family,
score_biological_subfamily = benchmark_def_wei_ann$weights$biological$subfamily,
score_biological_tribe = benchmark_def_wei_ann$weights$biological$tribe,
score_biological_subtribe = benchmark_def_wei_ann$weights$biological$subtribe,
score_biological_genus = benchmark_def_wei_ann$weights$biological$genus,
score_biological_subgenus = benchmark_def_wei_ann$weights$biological$subgenus,
score_biological_species = benchmark_def_wei_ann$weights$biological$species,
score_biological_subspecies = benchmark_def_wei_ann$weights$biological$subspecies,
score_biological_variety = benchmark_def_wei_ann$weights$biological$variety,
score_chemical_cla_kingdom = benchmark_def_wei_ann$weights$chemical$cla$kingdom,
score_chemical_cla_superclass = benchmark_def_wei_ann$weights$chemical$cla$superclass,
score_chemical_cla_class = benchmark_def_wei_ann$weights$chemical$cla$class,
score_chemical_cla_parent = benchmark_def_wei_ann$weights$chemical$cla$parent,
score_chemical_npc_pathway = benchmark_def_wei_ann$weights$chemical$npc$pathway,
score_chemical_npc_superclass = benchmark_def_wei_ann$weights$chemical$npc$superclass,
score_chemical_npc_class = benchmark_def_wei_ann$weights$chemical$npc$class,
minimal_consistency = benchmark_def_wei_ann$annotations$thresholds$consistency,
minimal_ms1_bio = benchmark_def_wei_ann$annotations$thresholds$ms1$biological,
minimal_ms1_chemo = benchmark_def_wei_ann$annotations$thresholds$ms1$chemical,
minimal_ms1_condition = benchmark_def_wei_ann$annotations$thresholds$ms1$condition,
compounds_names = benchmark_def_wei_ann$options$compounds_names,
high_confidence = FALSE,
remove_ties = benchmark_def_wei_ann$options$remove_ties,
summarize = benchmark_def_wei_ann$options$summarize,
pattern = benchmark_def_wei_ann$files$pattern,
force = benchmark_def_wei_ann$options$force
)
}
),
tar_target(
name = benchmark_files_pos,
command = {
benchmark_files_pos <- list(
components = benchmark_com_pre_pos,
edges = benchmark_edg_pre_pos,
taxa = benchmark_taxed_pos
)
}
),
tar_target(
name = benchmark_files_neg,
command = {
benchmark_files_pos <- list(
components = benchmark_com_pre_neg,
edges = benchmark_edg_pre_neg,
taxa = benchmark_taxed_neg
)
}
),
# tar_target(
# name = benchmark_ann_pre_ms1_pos,
# command = {
# benchmark_ann_pre_ms1_pos <-
# do.call(
# what = weight_annotations,
# args = c(benchmark_wei_par,
# benchmark_files_pos,
# annotations = benchmark_ann_fil_ms1_pos,
# weight_spectral = benchmark_def_wei_ann$weights$global$spectral,
# weight_chemical = benchmark_def_wei_ann$weights$global$chemical,
# weight_biological =
# benchmark_def_wei_ann$weights$global$biological,
# ms1_only = TRUE,
# output = "benchmark_lotus_ms1_pos.tsv.gz"
# )
# )
# }
# ),
tar_target(
name = benchmark_ann_pre_ms2_b_pos,
command = {
benchmark_ann_pre_ms2_b_pos <-
do.call(
what = weight_annotations,
args = c(
benchmark_wei_par,
benchmark_files_pos,
annotations = benchmark_ann_fil_spe_pos,
weight_spectral = 0.333,
weight_chemical = 0,
weight_biological = 0.666,
ms1_only = FALSE,
output = "benchmark_lotus_ms2_bio_pos.tsv.gz"
)
)
}
),
tar_target(
name = benchmark_ann_pre_ms1_ms2_b_pos,
command = {
benchmark_ann_pre_ms1_ms2_b_pos <-
do.call(
what = weight_annotations,
args = c(
benchmark_wei_par,
benchmark_files_pos,
annotations = benchmark_ann_fil_spe_ms1_pos,
ms1_only = FALSE,
weight_spectral = 0.333,
weight_chemical = 0,
weight_biological = 0.666,
output = "benchmark_lotus_ms1_ms2_bio_pos.tsv.gz"
)
)
}
),
tar_target(
name = benchmark_ann_pre_ms2_b_c_pos,
command = {
benchmark_ann_pre_ms2_b_c_pos <-
do.call(
what = weight_annotations,
args = c(
benchmark_wei_par,
benchmark_files_pos,
annotations = benchmark_ann_fil_spe_pos,
ms1_only = FALSE,
weight_spectral = 0.333,
weight_chemical = 0.166,
weight_biological = 0.500,
output = "benchmark_lotus_ms2_bio_chemo_pos.tsv.gz"
)
)
}
),
tar_target(
name = benchmark_ann_pre_ms1_ms2_b_c_pos,
command = {
benchmark_ann_pre_ms1_ms2_b_c_pos <-
do.call(
what = weight_annotations,
args = c(
benchmark_wei_par,
benchmark_files_pos,
annotations = benchmark_ann_fil_spe_ms1_pos,
ms1_only = FALSE,
weight_spectral = 0.333,
weight_chemical = 0.166,
weight_biological = 0.500,
output = "benchmark_lotus_ms1_ms2_bio_chemo_pos.tsv.gz"
)
)
}
),
# tar_target(
# name = benchmark_ann_pre_ms1_neg,
# command = {
# benchmark_ann_pre_ms1_neg <-
# do.call(
# what = weight_annotations,
# args = c(benchmark_wei_par,
# benchmark_files_neg,
# annotations = benchmark_ann_fil_ms1_neg,
# ms1_only = TRUE,
# weight_spectral = benchmark_def_wei_ann$weights$global$spectral,
# weight_chemical = benchmark_def_wei_ann$weights$global$chemical,
# weight_biological =
# benchmark_def_wei_ann$weights$global$biological,
# output = "benchmark_lotus_ms1_neg.tsv.gz"
# )
# )
# }
# ),
tar_target(
name = benchmark_ann_pre_ms2_b_neg,
command = {
benchmark_ann_pre_ms2_b_neg <-
do.call(
what = weight_annotations,
args = c(
benchmark_wei_par,
benchmark_files_neg,
annotations = benchmark_ann_fil_spe_neg,
ms1_only = FALSE,
weight_spectral = 0.333,
weight_chemical = 0,
weight_biological = 0.666,
output = "benchmark_lotus_ms2_bio_neg.tsv.gz"
)
)
}
),
tar_target(
name = benchmark_ann_pre_ms1_ms2_b_neg,
command = {
benchmark_ann_pre_ms1_ms2_b_neg <-
do.call(
what = weight_annotations,
args = c(
benchmark_wei_par,
benchmark_files_neg,
annotations = benchmark_ann_fil_spe_ms1_neg,
ms1_only = FALSE,
weight_spectral = 0.333,
weight_chemical = 0,
weight_biological = 0.666,
output = "benchmark_lotus_ms1_ms2_bio_neg.tsv.gz"
)
)
}
),
tar_target(
name = benchmark_ann_pre_ms2_b_c_neg,
command = {
benchmark_ann_pre_ms2_b_c_neg <-
do.call(
what = weight_annotations,
args = c(
benchmark_wei_par,
benchmark_files_neg,
annotations = benchmark_ann_fil_spe_neg,
ms1_only = FALSE,
weight_spectral = 0.333,
weight_chemical = 0.166,
weight_biological = 0.500,
output = "benchmark_lotus_ms2_bio_chemo_neg.tsv.gz"
)
)
}
),
tar_target(
name = benchmark_ann_pre_ms1_ms2_b_c_neg,
command = {
benchmark_ann_pre_ms1_ms2_b_c_neg <-
do.call(
what = weight_annotations,
args = c(
benchmark_wei_par,
benchmark_files_neg,
annotations = benchmark_ann_fil_spe_ms1_neg,
ms1_only = FALSE,
weight_spectral = 0.333,
weight_chemical = 0.166,
weight_biological = 0.500,
output = "benchmark_lotus_ms1_ms2_bio_chemo_neg.tsv.gz"
)
)
}
)
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.