| RunLinearModel | R Documentation | 
Wrapper function for running a ElasticNet model on a single cell dataset
RunLinearModel(
  obj,
  pert.col,
  batch.col = NULL,
  size.factor.col = NULL,
  mito.col = NULL,
  response.col = NULL,
  features.use = NULL,
  test.prop = 0.2,
  family = NULL,
  alpha.seq = c(0.1, 0.4, 0.7, 0.9, 0.95, 1),
  plot.cv = T,
  n.cores = 4,
  nlambda = 10,
  lambda.min.ratio = 0.01,
  nfolds = 4,
  seed = NULL,
  seq.lambda.pred = F,
  eval.metric = NULL
)
| obj | Seurat object | 
| pert.col | Metadata column containing perturbation info (required) | 
| batch.col | Metadata column containing batch info (default: NULL) | 
| size.factor.col | Metadata column containing library size info (default: NULL) | 
| mito.col | Metadata column containing mitochondrial fraction info (default: NULL) | 
| response.col | Metadata column containing the desired response. If NULL, the normalized data in the Seurat object will be used as the response. | 
| features.use | If response.col is NULL, a subset of features to use for the response | 
| test.prop | Proportion of cells held out for model evaluation | 
| family | GLM family to use for elasticnet (default: mgaussian) | 
| alpha.seq | Sequence of alpha values to test | 
| plot.cv | Plot cross validation results (default: True) | 
| n.cores | Number of cores to use (default: 4) | 
| nlambda | Number of lambda values to test (default: 10) | 
| lambda.min.ratio | Sets the minimum lambda value to test (default: 0.01) | 
| nfolds | Number of folds to cross validate over (default: 5) | 
| seed | Random seed for fold reproducibility | 
| seq.lambda.pred | Predict expression at each lambda value sequentially to save memory (default: F) | 
| eval.metric | Model evaluation metric | 
Returns a list with the design matrix, response, train/test split cross validation results, fitted model, model coefficients, and evaluation metrics
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.