R/AnnotationFunction-function.R

Defines functions anno_zoom anno_block anno_summary anno_link subset_by_intersect anno_mark row_anno_text row_anno_density row_anno_histogram row_anno_boxplot row_anno_barplot row_anno_points split_vec_by_NA add_horizon_polygon horizon_chart anno_horizon anno_joyplot anno_text anno_density anno_histogram anno_boxplot anno_barplot anno_lines update_anno_extend anno_points construct_axis_grob validate_axis_param default_axis_param anno_image anno_simple subset_vector subset_matrix_by_row anno_empty

Documented in anno_barplot anno_block anno_boxplot anno_density anno_empty anno_histogram anno_horizon anno_image anno_joyplot anno_lines anno_link anno_mark anno_points anno_simple anno_summary anno_text anno_zoom default_axis_param row_anno_barplot row_anno_boxplot row_anno_density row_anno_histogram row_anno_points row_anno_text subset_matrix_by_row subset_vector

# == title
# Empty Annotation
#
# == param
# -which Whether it is a column annotation or a row annotation?
# -border Whether draw borders of the annotation region?
# -zoom If it is true and when the heatmap is split, the empty annotation slices will have
#       equal height or width, and you can see the correspondance between the annotation slices
#       and the original heatmap slices.
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
#
# == details
# It creates an empty annotation and holds space, later users can add graphics
# by `decorate_annotation`. This function is useful when users have difficulty to
# implement `AnnotationFunction` object.
#
# In following example, an empty annotation is first created and later points are added:
#
# 	m = matrix(rnorm(100), 10)
# 	ht = Heatmap(m, top_annotation = HeatmapAnnotation(pt = anno_empty()))
# 	ht = draw(ht)
# 	co = column_order(ht)[[1]]
# 	pt_value = 1:10
# 	decorate_annotation("pt", {
# 		pushViewport(viewport(xscale = c(0.5, ncol(mat)+0.5), yscale = range(pt_value)))
# 		grid.points(seq_len(ncol(mat)), pt_value[co], pch = 16, default.units = "native")
# 		grid.yaxis()
# 		popViewport()
# 	})
#
# And it is similar as using `anno_points`:
#
# 	Heatmap(m, top_annotation = HeatmapAnnotation(pt = anno_points(pt_value)))
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#empty-annotation
#
# == examples
# anno = anno_empty()
# draw(anno, test = "anno_empty")
# anno = anno_empty(border = FALSE)
# draw(anno, test = "anno_empty without border")
anno_empty = function(which = c("column", "row"), border = TRUE, zoom = FALSE,
	width = NULL, height = NULL) {
	
	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
	} else {
		which = .ENV$current_annotation_which
	}

	anno_size = anno_width_and_height(which, width, height, unit(1, "cm"))
	
	
	fun = function(index) {
		if(border) grid.rect()
	}

	anno = AnnotationFunction(
		fun = fun,
		n = NA,
		fun_name = "anno_empty",
		which = which,
		var_import = list(border, zoom),
		subset_rule = list(),
		subsetable = TRUE,
		height = anno_size$height,
		width = anno_size$width,
		show_name = FALSE
	)
	
	return(anno) 
}

# == title
# Subset the Matrix by Rows
#
# == param
# -x A matrix.
# -i The row indices.
#
# == details
# Mainly used for constructing the `AnnotationFunction-class` object.
#
subset_matrix_by_row = function(x, i) x[i, , drop = FALSE]

# == title
# Subset the vector
#
# == param
# -x A vector.
# -i The indices.
#
# == details
# Mainly used for constructing the `AnnotationFunction-class` object.
#
subset_vector = function(x, i) x[i]

# == title
# Simple Annotation
#
# == param
# -x The value vector. The value can be a vector or a matrix. The length of the vector
#    or the nrow of the matrix is taken as the number of the observations of the annotation.
#    The value can be numeric or character and NA value is allowed.
# -col Color that maps to ``x``. If ``x`` is numeric and needs a continuous mapping, ``col`` 
#      should be a color mapping function which accepts a vector of values and returns a
#      vector of colors. Normally it is generated by `circlize::colorRamp2`. If ``x`` is discrete
#      (numeric or character) and needs a discrete color mapping, ``col`` should be a vector of 
#      colors with levels in ``x`` as vector names. If ``col`` is not specified, the color mapping
#      is randomly generated by ``ComplexHeatmap:::default_col``.
# -na_col Color for NA value.
# -which Whether it is a column annotation or a row annotation?
# -border Wether draw borders of the annotation region?
# -gp Graphic parameters for grid borders. The ``fill`` parameter is disabled.
# -pch Points/symbols that are added on top of the annotation grids. The value can be numeric
#      or single letters. It can be a vector if ``x`` is a vector and a matrix if ``x`` is a matrix.
#      No points are drawn if the corresponding values are NA.
# -pt_size Size of the points/symbols. It should be a `grid::unit` object. If ``x`` is a vector,
#          the value of ``pt_size`` can be a vector, while if ``x`` is a matrix, ``pt_size`` can
#          only be a single value.
# -pt_gp Graphic parameters for points/symbols. The length setting is same as ``pt_size``.
#     If ``pch`` is set as letters, the fontsize should be set as ``pt_gp = gpar(fontsize = ...)``.
# -simple_anno_size size of the simple annotation.
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
#
# == details
# The "simple annotation" is the most widely used annotation type which is heatmap-like, where
# the grid colors correspond to the values. `anno_simple` also supports to add points/symbols
# on top of the grids where the it can be normal point (when ``pch`` is set as numbers) or letters (when
# ``pch`` is set as single letters).
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#simple-annotation-as-an-annotation-function
#
# == example
# anno = anno_simple(1:10)
# draw(anno, test = "a numeric vector")
#
# anno = anno_simple(cbind(1:10, 10:1))
# draw(anno, test = "a matrix")
#
# anno = anno_simple(1:10, pch = c(1:4, NA, 6:8, NA, 10))
# draw(anno, test = "pch has NA values")
#
# anno = anno_simple(1:10, pch = c(rep("A", 5), rep(NA, 5)))
# draw(anno, test = "pch has NA values")
#
# pch = matrix(1:20, nc = 2)
# pch[sample(length(pch), 10)] = NA
# anno = anno_simple(cbind(1:10, 10:1), pch = pch)
# draw(anno, test = "matrix, pch is a matrix with NA values")
anno_simple = function(x, col, na_col = "grey", 
	which = c("column", "row"), border = FALSE, gp = gpar(col = NA),
	pch = NULL, pt_size = unit(1, "snpc")*0.8, pt_gp = gpar(), 
	simple_anno_size = ht_opt$simple_anno_size,
	width = NULL, height = NULL) {

	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
	} else {
		which = .ENV$current_annotation_which
	}

	if(is.data.frame(x)) x = as.matrix(x)
	if(is.matrix(x)) {
		if(ncol(x) == 1) {
			x = x[, 1]
		}
	}
	input_is_matrix = is.matrix(x)

	anno_size = anno_width_and_height(which, width, height, 
		simple_anno_size*ifelse(input_is_matrix, ncol(x), 1))
	
	if(missing(col)) {
		col = default_col(x)
	}
	if(is.atomic(col)) {
		color_mapping = ColorMapping(name = "foo", colors = col, na_col = na_col)
    } else if(is.function(col)) {
        color_mapping = ColorMapping(name = "foo", col_fun = col, na_col = na_col)
    } else if(inherits(col, "ColorMapping")) {
    	color_mapping = col
    } else {
    	stop_wrap("`col` should be a named vector/a color mapping function/a ColorMapping object.")
    }

    value = x
    gp = subset_gp(gp, 1)  # gp controls border

    if(is.matrix(value)) {
		n = nrow(value)
		nr = n
		nc = ncol(value)
	} else {
		n = length(value)
		nr = n
		nc = 1
	}
	
    if(!is.null(pch)) {
    	if(input_is_matrix) {
		    pch = normalize_graphic_param_to_mat(pch, ifelse(is.matrix(x), ncol(x), 1), n, "pch")
		    pt_size = pt_size[1]*(1/nc)
		    pt_gp = subset_gp(pt_gp, 1)
		} else {
			if(length(pch) == 1) pch = rep(pch, n)
			if(length(pt_size) == 1) pt_size = rep(pt_size, n)
			pt_gp = recycle_gp(pt_gp, n)
		}
	}

	row_fun = function(index) {
		
	    n = length(index)
	    y = (n - seq_len(n) + 0.5) / n
	    if(is.matrix(value)) {

			nc = ncol(value)
			pch = pch[index, , drop = FALSE]

			for(i in seq_len(nc)) {
			    fill = map_to_colors(color_mapping, value[index, i])
			    grid.rect(x = (i-0.5)/nc, y, height = 1/n, width = 1/nc, 
				gp = do.call("gpar", c(list(fill = fill), gp)))
			    if(!is.null(pch)) {
					l = !is.na(pch[, i])
					if(any(l)) {
						grid.points(x = rep((i-0.5)/nc, sum(l)), y = y[l], pch = pch[l, i], 
						    size = {if(length(pt_size) == 1) pt_size else pt_size[i]}, 
						    gp = subset_gp(pt_gp, i))
					}
			    }
			}
	    } else {
			fill = map_to_colors(color_mapping, value[index])
			grid.rect(x = 0.5, y, height = 1/n, width = 1, gp = do.call("gpar", c(list(fill = fill), gp)))
			if(!is.null(pch)) {
			    pch = pch[index]
			    pt_size = pt_size[index]
			    pt_gp = subset_gp(pt_gp, index)
			    l = !is.na(pch)
			    if(any(l)) {
				    grid.points(x = rep(0.5, sum(l)), y = y[l], pch = pch[l], size = pt_size[l], 
						gp = subset_gp(pt_gp, which(l)))
				}
			}
	    }
        if(border) grid.rect(gp = gpar(fill = "transparent"))
	}

	column_fun = function(index) {

		n = length(index)
		x = (seq_len(n) - 0.5) / n
        if(is.matrix(value)) {

            nc = ncol(value)
		    pch = pch[index, , drop = FALSE]
				  
	        for(i in seq_len(nc)) {
                fill = map_to_colors(color_mapping, value[index, i])
                grid.rect(x, y = (nc-i +0.5)/nc, width = 1/n, height = 1/nc, gp = do.call("gpar", c(list(fill = fill), gp)))
				if(!is.null(pch)){
				    l = !is.na(pch[, i])
				    if(any(l)) {
					    grid.points(x[l], y = rep((nc-i +0.5)/nc, sum(l)), pch = pch[l, i], 
							size = {if(length(pt_size) == 1) pt_size else pt_size[i]}, 
							gp = subset_gp(pt_gp, i))
					}
				}
		    }
        } else {
			fill = map_to_colors(color_mapping, value[index])
			grid.rect(x, y = 0.5, width = 1/n, height = 1, gp = do.call("gpar", c(list(fill = fill), gp)))
			if(!is.null(pch)) {
				pch = pch[index]
				pt_size = pt_size[index]
				pt_gp = subset_gp(pt_gp, index)
				l = !is.na(pch)
				if(any(l)) {
					grid.points(x[l], y = rep(0.5, sum(l)), pch = pch[l], size = pt_size[l], 
						gp = subset_gp(pt_gp, which(l)))
				}
			}
        }
        if(border) grid.rect(gp = gpar(fill = "transparent"))
	}

	if(which == "row") {
		fun = row_fun
	} else if(which == "column") {
		fun = column_fun
	}

	anno = AnnotationFunction(
		fun = fun,
		fun_name = "anno_simple",
		which = which,
		width = anno_size$width,
		height = anno_size$height,
		n = n,
		data_scale = c(0.5, nc + 0.5),
		var_import = list(value, gp, border, color_mapping, pt_gp, pt_size, pch)
	)

	anno@subset_rule = list()
	if(input_is_matrix) {
		anno@subset_rule$value = subset_matrix_by_row
		if(!is.null(pch)) {
			anno@subset_rule$pch = subset_matrix_by_row
		}
	} else {
		anno@subset_rule$value = subset_vector
		if(!is.null(pch)) {
			anno@subset_rule$pch = subset_vector
			anno@subset_rule$pt_size = subset_vector
			anno@subset_rule$pt_gp = subset_gp
		}
	}

	anno@subsetable = TRUE

	return(anno)      
}

# == title
# Image Annotation
#
# == param
# -image A vector of file paths of images. The format of the image is inferred from the suffix name of the image file.
#       NA values or empty strings in the vector means no image to drawn.
# -which Whether it is a column annotation or a row annotation?
# -border Wether draw borders of the annotation region?
# -gp Graphic parameters for annotation grids. If the image has transparent background, the ``fill`` parameter 
#     can be used to control the background color in the annotation grids.
# -space The space around the image to the annotation grid borders. The value should be a `grid::unit` object.
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
#
# == details
# This function supports image formats in ``png``, ``svg``, ``pdf``, ``eps``, ``jpeg/jpg``, ``tiff``. 
# ``png``, ``jpeg/jpg`` and ``tiff`` images are imported by `png::readPNG`, `jpeg::readJPEG` and 
# `tiff::readTIFF`, and drawn by `grid::grid.raster`. ``svg`` images are firstly reformatted by ``rsvg::rsvg_svg``
# and then imported by `grImport2::readPicture` and drawn by `grImport2::grid.picture`. ``pdf`` and ``eps``
# images are imported by `grImport::PostScriptTrace` and `grImport::readPicture`, later drawn by `grImport::grid.picture`.
#
# Different image formats can be mixed in the ``image`` vector.
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#image-annotation
#
# == example
# # download the free icons from https://github.com/Keyamoon/IcoMoon-Free
# \dontrun{
# image = sample(dir("~/Downloads/IcoMoon-Free-master/PNG/64px", full.names = TRUE), 10)
# anno = anno_image(image)
# draw(anno, test = "png")
# image[1:5] = ""
# anno = anno_image(image)
# draw(anno, test = "some of png")
# }
anno_image = function(image, which = c("column", "row"), border = TRUE, 
	gp = gpar(fill = NA, col = NA), space = unit(1, "mm"), 
	width = NULL, height = NULL) {

	image[is.na(image)] = ""
	l = grepl("^\\s*$", image)
	image[l] = ""
	
	allowed_image_type = c("png", "svg", "pdf", "eps", "jpeg", "jpg", "tiff")

	if(inherits(image, "character")) { ## they are file path
		image_type = tolower(gsub("^.*\\.(\\w+)$", "\\1", image))
		if(! all(image_type[image_type != ""] %in% allowed_image_type)) {
			stop_wrap("image file should be of png/svg/pdf/eps/jpeg/jpg/tiff.")
		}
	} else {
		stop_wrap("`image` should be a vector of path.")
	}

	n_image = length(image)
	image_list = vector("list", n_image)
	image_class = vector("character", n_image)
	for(i in seq_along(image)) {
		if(image[i] == "") {
			image_list[[i]] = NA
			image_class[i] = NA
		} else if(image_type[i] == "png") {
			if(!requireNamespace("png")) {
				stop_wrap("Need png package to read png images.")
			}
			image_list[[i]] = png::readPNG(image[i])
			image_class[i] = "raster"
		} else if(image_type[i] %in% c("jpeg", "jpg")) {
			if(!requireNamespace("jpeg")) {
				stop_wrap("Need jpeg package to read jpeg/jpg images.")
			}
			image_list[[i]] = jpeg::readJPEG(image[i])
			image_class[i] = "raster"
		} else if(image_type[i] == "tiff") {
			if(!requireNamespace("tiff")) {
				stop_wrap("Need tiff package to read tiff images.")
			}
			image_list[[i]] = tiff::readTIFF(image[i])
			image_class[i] = "raster"
		} else if(image_type[i] %in% c("pdf", "eps")) {
			if(!requireNamespace("grImport")) {
				stop_wrap("Need grImport package to read pdf/eps images.")
			}
			temp_file = tempfile()
			getFromNamespace("PostScriptTrace", ns = "grImport")(image[[i]], temp_file)
			image_list[[i]] = grImport::readPicture(temp_file)
			file.remove(temp_file)
			image_class[i] = "grImport::Picture"
		} else if(image_type[i] == "svg") {
			if(!requireNamespace("grImport2")) {
				stop_wrap("Need grImport2 package to read svg images.")
			}
			# if(!requireNamespace("rsvg")) {
			# 	stop_wrap("Need rsvg package to convert svg images.")
			# }
			temp_file = tempfile()
			# get it work on bioconductor build server
			oe = try(getFromNamespace("rsvg_svg", ns = "rsvg")(image[i], temp_file))
			if(inherits(oe, "try-error")) {
				stop_wrap("Need rsvg package to convert svg images.")
			}
			image_list[[i]] = grImport2::readPicture(temp_file)
			file.remove(temp_file)
			image_class[i] = "grImport2::Picture"
		}
	}
	yx_asp = sapply(image_list, function(x) {
		if(inherits(x, "array")) {
			nrow(x)/ncol(x)
		} else if(inherits(x, "Picture")) {
			max(x@summary@yscale)/max(x@summary@xscale)
		} else {
			1
		}
	})

	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
	} else {
		which = .ENV$current_annotation_which
	}

	space = space[1]

	anno_size = anno_width_and_height(which, width, height, unit(1, "cm"))

	gp = recycle_gp(gp, n_image)
	
	column_fun = function(index) {
		n = length(index)

		pushViewport(viewport())
		asp = convertHeight(unit(1, "npc") - space*2, "mm", valueOnly = TRUE)/convertWidth(unit(1/n, "npc") - space*2, "mm", valueOnly = TRUE)
		grid.rect(x = (1:n - 0.5)/n, width = 1/n, gp = subset_gp(gp, index))
		for(i in seq_len(n)) {
			if(identical(image_list[[ index[i] ]], NA)) next
			if(yx_asp[ index[i] ] > asp) {
				height = unit(1, "npc") - space*2
				width = convertHeight(height, "mm")*yx_asp[ index[i] ]
			} else {
				width = unit(1/n, "npc") - space*2
				height = yx_asp[ index[i] ]*convertWidth(width, "mm")
			}
			if(image_class[ index[i] ] == "raster") {
				grid.raster(image_list[[ index[i] ]], x = (i-0.5)/n, width = width, height = height)
			} else if(image_class[ index[i] ] == "grImport::Picture") {
				grid.picture = getFromNamespace("grid.picture", ns = "grImport")
				grid.picture(image_list[[ index[i] ]], x = (i-0.5)/n, width = width, height = height)
			} else if(image_class[ index[i] ] == "grImport2::Picture") {
				grid.picture = getFromNamespace("grid.picture", ns = "grImport2")
				grid.picture(image_list[[ index[i] ]], x = (i-0.5)/n, width = width, height = height)
			}
		}
		if(border) grid.rect(gp = gpar(fill = "transparent"))
		popViewport()
	}

	row_fun = function(index) {
		n = length(index)

		pushViewport(viewport())
		asp = convertHeight(unit(1/n, "npc") - space*2, "mm", valueOnly = TRUE)/convertWidth(unit(1, "npc") - space*2, "mm", valueOnly = TRUE)
		grid.rect(y = (n - 1:n + 0.5)/n, height = 1/n, gp = subset_gp(gp, index))
		for(i in seq_len(n)) {
			if(identical(image_list[[ index[i] ]], NA)) next
			if(yx_asp[ index[i] ] > asp) {
				height = unit(1/n, "npc") - space*2
				width = convertHeight(height, "mm")*(1/yx_asp[ index[i] ])
			} else {
				width = unit(1, "npc") - space*2
				height = yx_asp[ index[i] ]*convertWidth(width, "mm")
			}
			if(image_class[ index[i] ] == "raster") {
				grid.raster(image_list[[ index[i] ]], y = (n - i + 0.5)/n, width = width, height = height)
			} else if(image_class[ index[i] ] == "grImport::Picture") {
				grid.picture = getFromNamespace("grid.picture", ns = "grImport")
				grid.picture(image_list[[ index[i] ]], y = (n - i + 0.5)/n, width = width, height = height)
			} else if(image_class[ index[i] ] == "grImport2::Picture") {
				grid.picture = getFromNamespace("grid.picture", ns = "grImport2")
				grid.picture(image_list[[ index[i] ]], y = (n - i + 0.5)/n, width = width, height = height)
			}
		}
		if(border) grid.rect(gp = gpar(fill = "transparent"))
		popViewport()
	}
	
	if(which == "row") {
		fun = row_fun
	} else if(which == "column") {
		fun = column_fun
	}

	anno = AnnotationFunction(
		fun = fun,
		fun_name = "anno_image",
		which = which,
		width = anno_size$width,
		height = anno_size$height,
		n = n_image,
		data_scale = c(0.5, 1.5),
		var_import = list(gp, border, space, yx_asp, image_list, image_class)
	)

	anno@subset_rule$gp = subset_vector
	anno@subset_rule$image_list = subset_vector
	anno@subset_rule$image_class = subset_vector

	anno@subsetable = TRUE

	return(anno)   
}

# == title
# The Default Parameters for Annotation Axis
#
# == param
# -which Whether it is for column annotation or row annotation?
#
# == details
# There are following parameters for the annotation axis:
#
# -at The breaks of axis. By default it is automatically inferred.
# -labels The corresponding axis labels.
# -labels_rot The rotation of the axis labels.
# -gp Graphc parameters of axis labels. The value should be a `grid::unit` object.
# -side If it is for column annotation, the value should only be one of ``left`` and ``right``. If
#       it is for row annotation, the value should only be one of ``top`` and ``bottom``.
# -facing Whether the axis faces to the outside of the annotation region or inside. Sometimes when
#         appending more than one heatmaps, the axes of column annotations of one heatmap might
#         overlap to the neighbouring heatmap, setting ``facing`` to ``inside`` may invoild it.
# -direction The direction of the axis. Value should be "normal" or "reverse".
#
# All the parameters are passed to `annotation_axis_grob` to construct an axis grob.
#
# == example
# default_axis_param("column")
# default_axis_param("row")
default_axis_param = function(which) {
	list(
		at = NULL, 
		labels = NULL, 
		labels_rot = ifelse(which == "column", 0, 90), 
		gp = gpar(fontsize = 8), 
		side = ifelse(which == "column", "left", "bottom"), 
		facing = "outside",
		direction = "normal"
	)
}

validate_axis_param = function(axis_param, which) {
	dft = default_axis_param(which)
	for(nm in names(axis_param)) {
		dft[[nm]] = axis_param[[nm]]
	}
	if(which == "row") {
		if(dft$side %in% c("left", "right")) {
			stop_wrap("axis side can only be set to 'top' or 'bottom' for row annotations.")
		}
	}
	if(which == "column") {
		if(dft$side %in% c("top", "bottom")) {
			stop_wrap("axis side can only be set to 'left' or 'right' for row annotations.")
		}
	}
	return(dft)
}

construct_axis_grob = function(axis_param, which, data_scale) {
	axis_param_default = default_axis_param(which)

	for(nm in setdiff(names(axis_param_default), names(axis_param))) {
		axis_param[[nm]] = axis_param_default[[nm]]
	}
	
	if(is.null(axis_param$at)) {
		at = pretty_breaks(data_scale)
		axis_param$at = at
		axis_param$labels = at
	}

	if(is.null(axis_param$labels)) {
		axis_param$labels = axis_param$at
	}

	axis_param$scale = data_scale
	axis_grob = do.call(annotation_axis_grob, axis_param)
	return(axis_grob)
}

# == title
# Points Annotation
#
# == param
# -x The value vector. The value can be a vector or a matrix. The length of the vector
#    or the number of rows of the matrix is taken as the number of the observations of the annotation.
# -which Whether it is a column annotation or a row annotation?
# -border Wether draw borders of the annotation region?
# -gp Graphic parameters for points. The length of each graphic parameter can be 1, length of ``x`` if ``x``
#     is a vector, or number of columns of ``x`` is ``x`` is a matrix.
# -pch Point type. The length setting is the same as ``gp``.
# -size Point size, the value should be a `grid::unit` object. The length setting is the same as ``gp``.
# -ylim Data ranges. By default it is ``range(x)``.
# -extend The extension to both side of ``ylim``. The value is a percent value corresponding to ``ylim[2] - ylim[1]``.
# -axis Whether to add axis?
# -axis_param parameters for controlling axis. See `default_axis_param` for all possible settings and default parameters.
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
# -... Other arguments.
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#points-annotation
#
# == example
# anno = anno_points(runif(10))
# draw(anno, test = "anno_points")
# anno = anno_points(matrix(runif(20), nc = 2), pch = 1:2)
# draw(anno, test = "matrix")
anno_points = function(x, which = c("column", "row"), border = TRUE, gp = gpar(), pch = 16, 
	size = unit(2, "mm"), ylim = NULL, extend = 0.05, axis = TRUE,
	axis_param = default_axis_param(which), width = NULL, height = NULL, ...) {

	other_args = list(...)
	if(length(other_args)) {
		if("axis_gp" %in% names(other_args)) {
			stop_wrap("`axis_gp` is removed from the arguments. Use `axis_param = list(gp = ...)` instead.")
		}
		if("axis_direction" %in% names(other_args)) {
			stop_wrap("`axis_direction` is not supported any more.")
		}
	}
	if("pch_as_image" %in% names(other_args)) {
		pch_as_image = other_args$pch_as_image
	} else {
		pch_as_image = FALSE
	}

	ef = function() NULL
	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
		dev.null()
		ef = dev.off2
	} else {
		which = .ENV$current_annotation_which
	}

	on.exit(ef())

	if(is.data.frame(x)) x = as.matrix(x)
	if(is.matrix(x)) {
		if(ncol(x) == 1) {
			x = x[, 1]
		}
	}
	input_is_matrix = is.matrix(x)

	anno_size = anno_width_and_height(which, width, height, unit(1, "cm"))

	if(is.matrix(x)) {
		n = nrow(x)
		nr = n
		nc = ncol(x)
	} else {
		n = length(x)
		nr = n
		nc = 1
	}

	if(input_is_matrix) {
		gp = recycle_gp(gp, nc)
		if(length(pch) == 1) pch = rep(pch, nc)
		if(length(size) == 1) size = rep(size, nc)
	} else if(is.atomic(x)) {
		gp = recycle_gp(gp, n)
		if(length(pch) == 1) pch = rep(pch, n)
		if(length(size) == 1) size = rep(size, n)
	}

	if(is.null(ylim)) {
		data_scale = range(x, na.rm = TRUE)
	} else {
		data_scale = ylim
	}
	data_scale = data_scale + c(-extend, extend)*(data_scale[2] - data_scale[1])

	value = x

	axis_param = validate_axis_param(axis_param, which)
	axis_grob = if(axis) construct_axis_grob(axis_param, which, data_scale) else NULL

	row_fun = function(index, k = 1, N = 1) {
		
		n = length(index)

		if(axis_param$direction == "reverse") {
			value = data_scale[2] - value + data_scale[1]
		}

		pushViewport(viewport(xscale = data_scale, yscale = c(0.5, n+0.5)))
		if(is.matrix(value)) {
			for(i in seq_len(ncol(value))) {
				grid.points(value[index, i], n - seq_along(index) + 1, gp = subset_gp(gp, i), 
					default.units = "native", pch = pch[i], size = size[i])
			}
		} else {
			if(pch_as_image) {
				for(ii in seq_along(index)) {
					pch_image = png::readPNG(pch[ index[ii] ])
					grid.raster(pch_image, y = n - ii + 1, x = value[ index[ii] ], 
						default.units = "native", width = size[ index[ii] ], 
						height = size[ index[ii] ]*(nrow(pch_image)/ncol(pch_image)))
				}
			} else {
				grid.points(value[index], n - seq_along(index) + 1, gp = subset_gp(gp, index), default.units = "native", 
					pch = pch[index], size = size[index])
			}
		}
		if(axis_param$side == "top") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "bottom") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		if(border) grid.rect(gp = gpar(fill = "transparent"))
		popViewport()
	}

	column_fun = function(index, k = 1, N = 1) {
		
		n = length(index)

		if(axis_param$direction == "reverse") {
			value = data_scale[2] - value + data_scale[1]
		}
		
		pushViewport(viewport(yscale = data_scale, xscale = c(0.5, n+0.5)))
		if(is.matrix(value)) {
			for(i in seq_len(ncol(value))) {
				grid.points(seq_along(index), value[index, i], gp = subset_gp(gp, i), 
					default.units = "native", pch = pch[i], size = size[i])
			}
		} else {
			if(pch_as_image) {
				for(ii in seq_along(index)) {
					pch_image = png::readPNG(pch[ index[ii] ])
					grid.raster(pch_image, x = ii, value[ index[ii] ], 
						default.units = "native", width = size[ index[ii] ], 
						height = size[ index[ii] ]*(nrow(pch_image)/ncol(pch_image)))
				}
			} else {
				grid.points(seq_along(index), value[index], gp = subset_gp(gp, index), 
					default.units = "native", pch = pch[index], size = size[index])
			}
		}
		if(axis_param$side == "left") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "right") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		if(border) grid.rect(gp = gpar(fill = "transparent"))
		popViewport()
	}

	if(which == "row") {
		fun = row_fun
	} else if(which == "column") {
		fun = column_fun
	}

	anno = AnnotationFunction(
		fun = fun,
		fun_name = "anno_points",
		which = which,
		width = anno_size$width,
		height = anno_size$height,
		n = n,
		data_scale = data_scale,
		var_import = list(value, gp, border, pch, size, axis, axis_param, axis_grob, data_scale, pch_as_image)
	)

	anno@subset_rule$gp = subset_vector
	if(input_is_matrix) {
		anno@subset_rule$value = subset_matrix_by_row
	} else {
		anno@subset_rule$value = subset_vector
		anno@subset_rule$gp = subset_gp
		anno@subset_rule$size = subset_vector
		anno@subset_rule$pch = subset_vector
	}

	anno@subsetable = TRUE

	anno@extended = update_anno_extend(anno, axis_grob, axis_param)
		
	return(anno) 
}

update_anno_extend = function(anno, axis_grob, axis_param) {
	extended = anno@extended
	if(is.null(axis_grob)) {
		return(extended)
	}

	if(axis_param$facing == "outside") {
		if(axis_param$side == "left") {
			extended[2] = convertWidth(grobWidth(axis_grob), "mm")
		} else if(axis_param$side == "right") {
			extended[4] = convertWidth(grobWidth(axis_grob), "mm")
		} else if(axis_param$side == "top") {
			extended[3] = convertHeight(grobHeight(axis_grob), "mm")
		} else if(axis_param$side == "bottom") {
			extended[1] = convertHeight(grobHeight(axis_grob), "mm")
		}
	}
	return(extended)
}

# == title
# Lines Annotation
#
# == param
# -x The value vector. The value can be a vector or a matrix. The length of the vector
#    or the number of rows of the matrix is taken as the number of the observations of the annotation.
# -which Whether it is a column annotation or a row annotation?
# -border Wether draw borders of the annotation region?
# -gp Graphic parameters for lines. The length of each graphic parameter can be 1, or number of columns of ``x`` is ``x`` is a matrix.
# -add_points Whether to add points on the lines?
# -smooth If it is ``TRUE``, smoothing by `stats::loess` is performed. If it is ``TRUE``, ``add_points`` is set to ``TRUE`` by default.
# -pch Point type. The length setting is the same as ``gp``.
# -size Point size, the value should be a `grid::unit` object. The length setting is the same as ``gp``.
# -pt_gp Graphic parameters for points. The length setting is the same as ``gp``.
# -ylim Data ranges. By default it is ``range(x)``.
# -extend The extension to both side of ``ylim``. The value is a percent value corresponding to ``ylim[2] - ylim[1]``.
# -axis Whether to add axis?
# -axis_param parameters for controlling axis. See `default_axis_param` for all possible settings and default parameters.
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#lines-annotation
#
# == example
# anno = anno_lines(runif(10))
# draw(anno, test = "anno_lines")
# anno = anno_lines(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3))
# draw(anno, test = "matrix")
# anno = anno_lines(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3),
# 	add_points = TRUE, pt_gp = gpar(col = 5:6), pch = c(1, 16))
# draw(anno, test = "matrix")
anno_lines = function(x, which = c("column", "row"), border = TRUE, gp = gpar(), 
	add_points = smooth, smooth = FALSE, pch = 16, size = unit(2, "mm"), pt_gp = gpar(), ylim = NULL, 
	extend = 0.05, axis = TRUE, axis_param = default_axis_param(which),
	width = NULL, height = NULL) {

	ef = function() NULL
	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
		dev.null()
		ef = dev.off2
	} else {
		which = .ENV$current_annotation_which
	}

	on.exit(ef())

	if(is.data.frame(x)) x = as.matrix(x)
	if(is.matrix(x)) {
		if(ncol(x) == 1) {
			x = x[, 1]
		}
	}
	input_is_matrix = is.matrix(x)

	anno_size = anno_width_and_height(which, width, height, unit(1, "cm"))

	if(is.matrix(x)) {
		n = nrow(x)
		nr = n
		nc = ncol(x)
	} else {
		n = length(x)
		nr = n
		nc = 1
	}

	if(input_is_matrix) {
		gp = recycle_gp(gp, nc)
		pt_gp = recycle_gp(pt_gp, nc)
		if(length(pch) == 1) pch = rep(pch, nc)
		if(length(size) == 1) size = rep(size, nc)
	} else if(is.atomic(x)) {
		gp = recycle_gp(gp, 1)
		pt_gp = recycle_gp(pt_gp, n)
		if(length(pch) == 1) pch = rep(pch, n)
		if(length(size) == 1) size = rep(size, n)
	}

	if(is.null(ylim)) {
		data_scale = range(x, na.rm = TRUE)
	} else {
		data_scale = ylim
	}
	data_scale = data_scale + c(-extend, extend)*(data_scale[2] - data_scale[1])

	value = x

	axis_param = validate_axis_param(axis_param, which)
	axis_grob = if(axis) construct_axis_grob(axis_param, which, data_scale) else NULL

	row_fun = function(index, k = 1, N = 1) {
		n = length(index)

		if(axis_param$direction == "reverse") {
			value = data_scale[2] - value + data_scale[1]
		}

		pushViewport(viewport(xscale = data_scale, yscale = c(0.5, n+0.5)))
		if(is.matrix(value)) {
			for(i in seq_len(ncol(value))) {
				x = n - seq_along(index) + 1
				y = value[index, i]
				if(smooth) {
					fit = loess(y ~ x)
					x2 = seq(x[1], x[length(x)], length = 100)
					y2 = predict(fit, x2)
					grid.lines(y2, x2, gp = subset_gp(gp, i), default.units = "native")
				} else {
					grid.lines(y, x, gp = subset_gp(gp, i), default.units = "native")
				}
				if(add_points) {
					grid.points(y, x, gp = subset_gp(pt_gp, i), 
						default.units = "native", pch = pch[i], size = size[i])
				}
			}
		} else {
			x = n - seq_along(index) + 1
			y = value[index]
			if(smooth) {
				fit = loess(y ~ x)
				x2 = seq(x[1], x[length(x)], length = 100)
				y2 = predict(fit, x2)
				grid.lines(y2, x2, gp = gp, default.units = "native")
			} else {
				grid.lines(y, x, gp = gp, default.units = "native")
			}
			if(add_points) {
				grid.points(y, x, gp = subset_gp(pt_gp, index), default.units = "native", 
					pch = pch[index], size = size[index])
			}
		}
		if(axis_param$side == "top") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "bottom") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		if(border) grid.rect(gp = gpar(fill = "transparent"))
		popViewport()
	}

	column_fun = function(index, k = 1, N = 1) {
		n = length(index)

		if(axis_param$direction == "reverse") {
			value = data_scale[2] - value + data_scale[1]
		}

		pushViewport(viewport(yscale = data_scale, xscale = c(0.5, n+0.5)))
		if(is.matrix(value)) {
			for(i in seq_len(ncol(value))) {
				x = seq_along(index)
				y = value[index, i]
				if(smooth) {
					fit = loess(y ~ x)
					x2 = seq(x[1], x[length(x)], length = 100)
					y2 = predict(fit, x2)
					grid.lines(x2, y2, gp = subset_gp(gp, i), default.units = "native")
				} else {
					grid.lines(x, y, gp = subset_gp(gp, i), default.units = "native")
				}
				if(add_points) {
					grid.points(x, y, gp = subset_gp(pt_gp, i), 
						default.units = "native", pch = pch[i], size = size[i])
				}
			}
		} else {
			x = seq_along(index)
			y = value[index]
			if(smooth) {
				fit = loess(y ~ x)
				x2 = seq(x[1], x[length(x)], length = 100)
				y2 = predict(fit, x2)
				grid.lines(x2, y2, gp = gp, default.units = "native")
			} else {
				grid.lines(x, y, gp = gp, default.units = "native")
			}
			if(add_points) {
				grid.points(seq_along(index), value[index], gp = subset_gp(pt_gp, index), default.units = "native", 
					pch = pch[index], size = size[index])
			}
		}
		if(axis_param$side == "left") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "right") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		if(border) grid.rect(gp = gpar(fill = "transparent"))
		popViewport()
	}

	if(which == "row") {
		fun = row_fun
	} else if(which == "column") {
		fun = column_fun
	}

	anno = AnnotationFunction(
		fun = fun,
		fun_name = "anno_points",
		which = which,
		width = anno_size$width,
		height = anno_size$height,
		n = n,
		data_scale = data_scale,
		var_import = list(value, gp, border, pch, size, pt_gp, axis, axis_param, 
			axis_grob, data_scale, add_points, smooth)
	)

	anno@subset_rule$gp = subset_vector
	if(input_is_matrix) {
		anno@subset_rule$value = subset_matrix_by_row
	} else {
		anno@subset_rule$value = subset_vector
		anno@subset_rule$gp = subset_gp
		anno@subset_rule$pt_gp = subset_gp
		anno@subset_rule$size = subset_vector
		anno@subset_rule$pch = subset_vector
	}

	anno@subsetable = TRUE

	anno@extended = update_anno_extend(anno, axis_grob, axis_param)
		
	return(anno) 
}

# == title
# Barplot Annotation
#
# == param
# -x The value vector. The value can be a vector or a matrix. The length of the vector
#    or the number of rows of the matrix is taken as the number of the observations of the annotation.
#    If ``x`` is a vector, the barplots will be represented as stacked barplots.
# -baseline baseline of bars. The value should be "min" or "max", or a numeric value. It is enforced to be zero
#       for stacked barplots.
# -which Whether it is a column annotation or a row annotation?
# -border Wether draw borders of the annotation region?
# -bar_width Relative width of the bars. The value should be smaller than one.
# -gp Graphic parameters for points. The length of each graphic parameter can be 1, length of ``x`` if ``x``
#     is a vector, or number of columns of ``x`` is ``x`` is a matrix.
# -ylim Data ranges. By default it is ``range(x)`` if ``x`` is a vector, or ``range(rowSums(x))`` if ``x`` is a matrix.
# -extend The extension to both side of ``ylim``. The value is a percent value corresponding to ``ylim[2] - ylim[1]``.
# -axis Whether to add axis?
# -axis_param parameters for controlling axis. See `default_axis_param` for all possible settings and default parameters.
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
# -... Other arguments.
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#barplot_annotation
#
# == example
# anno = anno_barplot(1:10)
# draw(anno, test = "a vector")
#
# m = matrix(runif(4*10), nc = 4)
# m = t(apply(m, 1, function(x) x/sum(x)))
# anno = anno_barplot(m, gp = gpar(fill = 2:5), bar_width = 1, height = unit(6, "cm"))
# draw(anno, test = "proportion matrix")
anno_barplot = function(x, baseline = 0, which = c("column", "row"), border = TRUE, bar_width = 0.6,
	gp = gpar(fill = "#CCCCCC"), ylim = NULL, extend = 0.05, axis = TRUE, 
	axis_param = default_axis_param(which),
	width = NULL, height = NULL, ...) {

	other_args = list(...)
	if(length(other_args)) {
		if("axis_gp" %in% names(other_args)) {
			stop_wrap("`axis_gp` is removed from the arguments. Use `axis_param = list(gp = ...)` instead.")
		}
		if("axis_side" %in% names(other_args)) {
			stop_wrap("`axis_side` is removed from the arguments. Use `axis_param = list(side = ...)` instead.")
		}
		if("axis_direction" %in% names(other_args)) {
			stop_wrap("`axis_direction` is not supported any more.")
		}
	}

	if(inherits(x, "list")) x = do.call("cbind", x)
	if(inherits(x, "data.frame")) x = as.matrix(x)
	if(inherits(x, "matrix")) {
		sg = apply(x, 1, function(xx) all(sign(xx) %in% c(1, 0)) || all(sign(xx) %in% c(-1, 0)))
		if(!all(sg)) {
			stop_wrap("Since `x` is a matrix, the sign of each row should be either all positive or all negative.")
		}
	}
	# convert everything to matrix
	if(is.null(dim(x))) x = matrix(x, ncol = 1)
	nc = ncol(x)
	if(missing(gp)) {
		gp = gpar(fill = grey(seq(0, 1, length = nc+2))[-c(1, nc+2)])
	}

	data_scale = range(rowSums(x, na.rm = TRUE), na.rm = TRUE)
	if(!is.null(ylim)) data_scale = ylim
	if(baseline == "min") {
		data_scale = data_scale + c(0, extend)*(data_scale[2] - data_scale[1])
		baseline = min(x)
	} else if(baseline == "max") {
		data_scale = data_scale + c(-extend, 0)*(data_scale[2] - data_scale[1])
		baseline = max(x)
	} else {
		if(is.numeric(baseline)) {
			if(baseline == 0 && all(abs(rowSums(x) - 1) < 1e-6)) {
				data_scale = c(0, 1)
			} else if(baseline <= data_scale[1]) {
				data_scale = c(baseline, extend*(data_scale[2] - baseline) + data_scale[2])
			} else if(baseline >= data_scale[2]) {
				data_scale = c(-extend*(baseline - data_scale[1]) + data_scale[1], baseline)
			} else {
				data_scale = data_scale + c(-extend, extend)*(data_scale[2] - data_scale[1])
			}
		}
	}

	ef = function() NULL
	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
		dev.null()
		ef = dev.off2
	} else {
		which = .ENV$current_annotation_which
	}

	on.exit(ef())

	anno_size = anno_width_and_height(which, width, height, unit(1, "cm"))

	if(nc == 1) {
		gp = recycle_gp(gp, nrow(x))
	} else  {
		gp = recycle_gp(gp, nc)
	}

	value = x
	axis_param = validate_axis_param(axis_param, which)
	axis_grob = if(axis) construct_axis_grob(axis_param, which, data_scale) else NULL

	row_fun = function(index, k = 1, N = 1) {
		n = length(index)
		
		if(axis_param$direction == "reverse") {
			value_origin = value
			value = data_scale[2] - value + data_scale[1]
			baseline = data_scale[2] - baseline + data_scale[1]
		}

		pushViewport(viewport(xscale = data_scale, yscale = c(0.5, n+0.5)))
		if(ncol(value) == 1) {
			width = value[index] - baseline
			x_coor = width/2+baseline
			grid.rect(x = x_coor, y = n - seq_along(index) + 1, width = abs(width), height = 1*bar_width, default.units = "native", gp = subset_gp(gp, index))
		} else {
			for(i in seq_len(ncol(value))) {
				if(axis_param$direction == "normal") {
					width = abs(value[index, i])
					x_coor = rowSums(value[index, seq_len(i-1), drop = FALSE]) + width/2
					grid.rect(x = x_coor, y = n - seq_along(index) + 1, width = abs(width), height = 1*bar_width, default.units = "native", gp = subset_gp(gp, i))
				} else {
					width = value_origin[index, i] # the original width
					x_coor = rowSums(value_origin[index, seq_len(i-1), drop = FALSE]) + width/2 #distance to the right
					x_coor = data_scale[2] - x_coor + data_scale[1]
					grid.rect(x = x_coor, y = n - seq_along(index) + 1, width = abs(width), height = 1*bar_width, default.units = "native", gp = subset_gp(gp, i))
				}
			}
		}
		if(axis_param$side == "top") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "bottom") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		if(border) grid.rect(gp = gpar(fill = "transparent"))
		popViewport()
	}
	column_fun = function(index, k = 1, N = 1) {
		n = length(index)
		
		if(axis_param$direction == "reverse") {
			value_origin = value
			value = data_scale[2] - value + data_scale[1]
			baseline = data_scale[2] - baseline + data_scale[1]
		}

		pushViewport(viewport(yscale = data_scale, xscale = c(0.5, n+0.5)))
		if(ncol(value) == 1) {
			height = value[index] - baseline
			y_coor = height/2+baseline
			grid.rect(y = y_coor, x = seq_along(index), height = abs(height), width = 1*bar_width, default.units = "native", gp = subset_gp(gp, index))
		} else {
			for(i in seq_len(ncol(value))) {
				if(axis_param$direction == "normal") {
					height = value[index, i]
					y_coor = rowSums(value[index, seq_len(i-1), drop = FALSE]) + height/2
					grid.rect(y = y_coor, x = seq_along(index), height = abs(height), width = 1*bar_width, default.units = "native", gp = subset_gp(gp, i))
				} else {
					height = value_origin[index, i]
					y_coor = rowSums(value_origin[index, seq_len(i-1), drop = FALSE]) + height/2
					y_coor = data_scale[2] - y_coor + data_scale[1]
					grid.rect(y = y_coor, x = seq_along(index), height = abs(height), width = 1*bar_width, default.units = "native", gp = subset_gp(gp, i))
				}
			}
		}
		if(axis_param$side == "left") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "right") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		if(border) grid.rect(gp = gpar(fill = "transparent"))
		popViewport()
	}
	
	if(which == "row") {
		fun = row_fun
	} else if(which == "column") {
		fun = column_fun
	}
	n = nrow(value)

	anno = AnnotationFunction(
		fun = fun,
		fun_name = "anno_barplot",
		which = which,
		width = anno_size$width,
		height = anno_size$height,
		n = n,
		data_scale = data_scale,
		var_import = list(value, gp, border, bar_width, baseline, axis, axis_param, axis_grob, data_scale)
	)

	anno@subset_rule$value = subset_matrix_by_row
	if(ncol(value) == 1) {
		anno@subset_rule$gp = subset_gp
	}
		
	anno@subsetable = TRUE

	anno@extended = update_anno_extend(anno, axis_grob, axis_param)

	return(anno) 
}

# == title
# Boxplot Annotation
#
# == param
# -x A matrix or a list. If ``x`` is a matrix and if ``which`` is ``column``, statistics for boxplots
#    are calculated by columns, if ``which`` is ``row``, the calculation is done by rows.
# -which Whether it is a column annotation or a row annotation?
# -border Wether draw borders of the annotation region?
# -gp Graphic parameters for the boxes. The length of the graphic parameters should be one or the number of observations.
# -ylim Data ranges.
# -extend The extension to both side of ``ylim``. The value is a percent value corresponding to ``ylim[2] - ylim[1]``.
# -outline Whether draw outline of boxplots?
# -box_width Relative width of boxes. The value should be smaller than one.
# -pch Point style.
# -size Point size.
# -axis Whether to add axis?
# -axis_param parameters for controlling axis. See `default_axis_param` for all possible settings and default parameters.
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
# -... Other arguments.
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#box-annotation
#
# == example
# set.seed(123)
# m = matrix(rnorm(100), 10)
# anno = anno_boxplot(m, height = unit(4, "cm"))
# draw(anno, test = "anno_boxplot")
# anno = anno_boxplot(m, height = unit(4, "cm"), gp = gpar(fill = 1:10))
# draw(anno, test = "anno_boxplot with gp")
anno_boxplot = function(x, which = c("column", "row"), border = TRUE,
	gp = gpar(fill = "#CCCCCC"), ylim = NULL, extend = 0.05, outline = TRUE, box_width = 0.6,
	pch = 1, size = unit(2, "mm"), axis = TRUE, axis_param = default_axis_param(which),
	width = NULL, height = NULL, ...) {

	other_args = list(...)
	if(length(other_args)) {
		if("axis_gp" %in% names(other_args)) {
			stop_wrap("`axis_gp` is removed from the arguments. Use `axis_param = list(gp = ...)` instead.")
		}
		if("axis_side" %in% names(other_args)) {
			stop_wrap("`axis_side` is removed from the arguments. Use `axis_param = list(side = ...)` instead.")
		}
		if("axis_direction" %in% names(other_args)) {
			stop_wrap("`axis_direction` is not supported any more.")
		}
	}

	ef = function() NULL
	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
		dev.null()
		ef = dev.off2
	} else {
		which = .ENV$current_annotation_which
	}

	on.exit(ef())

	anno_size = anno_width_and_height(which, width, height, unit(2, "cm"))

	## convert matrix all to list (or data frame)
	if(is.matrix(x)) {
		if(which == "column") {
			value = as.data.frame(x)
		} else if(which == "row") {
			value = as.data.frame(t(x))
		}
	} else {
		value = x
	}

	if(is.null(ylim)) {
		if(!outline) {
			boxplot_stats = boxplot(value, plot = FALSE)$stats
			data_scale = range(boxplot_stats)
		} else {
			data_scale = range(value, na.rm = TRUE)
		}
	} else {
		data_scale = ylim
	}
	data_scale = data_scale + c(-extend, extend)*(data_scale[2] - data_scale[1])

	n = length(value)
	gp = recycle_gp(gp, n)
	if(length(pch) == 1) pch = rep(pch, n)
	if(length(size) == 1) size = rep(size, n)

	axis_param = validate_axis_param(axis_param, which)
	axis_grob = if(axis) construct_axis_grob(axis_param, which, data_scale) else NULL

	row_fun = function(index, k = 1, N = 1) {

		if(axis_param$direction == "reverse") {
			value = lapply(value, function(x) data_scale[2] - x + data_scale[1])
		}

		n_all = length(value)
		value = value[index]
		boxplot_stats = boxplot(value, plot = FALSE)$stats
		
		n = length(index)
		gp = subset_gp(gp, index)
		pch = pch[index]
		size = size[index]
		pushViewport(viewport(xscale = data_scale, yscale = c(0.5, n+0.5)))
		
		grid.rect(x = boxplot_stats[2, ], y = n - seq_along(index) + 1,  
			height = 1*box_width, width = boxplot_stats[4, ] - boxplot_stats[2, ], just = "left", 
			default.units = "native", gp = gp)

		grid.segments(boxplot_stats[5, ], n - seq_along(index) + 1 - 0.5*box_width, 
			          boxplot_stats[5, ], n - seq_along(index) + 1 + 0.5*box_width, 
			          default.units = "native", gp = gp)
		grid.segments(boxplot_stats[5, ], n - seq_along(index) + 1,
			          boxplot_stats[4, ], n - seq_along(index) + 1, 
			          default.units = "native", gp = gp)
		grid.segments(boxplot_stats[1, ], n - seq_along(index) + 1, 
			          boxplot_stats[2, ], n - seq_along(index) + 1, 
			          default.units = "native", gp = gp)
		grid.segments(boxplot_stats[1, ], n - seq_along(index) + 1 - 0.5*box_width, 
			          boxplot_stats[1, ], n - seq_along(index) + 1 + 0.5*box_width, 
			          default.units = "native", gp = gp)
		grid.segments(boxplot_stats[3, ], n - seq_along(index) + 1 - 0.5*box_width, 
			          boxplot_stats[3, ], n - seq_along(index) + 1 + 0.5*box_width, 
			          default.units = "native", gp = gp)
		if(outline) {
			for(i in seq_along(value)) {
				l1 = value[[i]] > boxplot_stats[5,i]
				l1[is.na(l1)] = FALSE
				if(sum(l1)) grid.points(y = rep(n - i + 1, sum(l1)), x = value[[i]][l1], 
					default.units = "native", gp = subset_gp(gp, i), pch = pch[i], size = size[i])
				l2 = value[[i]] < boxplot_stats[1,i]
				l2[is.na(l2)] = FALSE
				if(sum(l2)) grid.points(y = rep(n - i + 1, sum(l2)), x = value[[i]][l2], 
					default.units = "native", gp = subset_gp(gp, i), pch = pch[i], size = size[i])
			}
		}
		if(axis_param$side == "top") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "bottom") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		if(border) grid.rect(gp = gpar(fill = "transparent"))
		popViewport()
	}
	column_fun = function(index, k = 1, N = 1) {

		if(axis_param$direction == "reverse") {
			value = lapply(value, function(x) data_scale[2] - x + data_scale[1])
		}

		value = value[index]
		boxplot_stats = boxplot(value, plot = FALSE)$stats

		n = length(index)
		gp = subset_gp(gp, index)
		pch = pch[index]
		size = size[index]
		pushViewport(viewport(xscale = c(0.5, n+0.5), yscale = data_scale))
		grid.rect(x = seq_along(index), y = boxplot_stats[2, ], 
			height = boxplot_stats[4, ] - boxplot_stats[2, ], width = 1*box_width, just = "bottom", 
			default.units = "native", gp = gp)
		
		grid.segments(seq_along(index) - 0.5*box_width, boxplot_stats[5, ],
			          seq_along(index) + 0.5*box_width, boxplot_stats[5, ], 
			          default.units = "native", gp = gp)
		grid.segments(seq_along(index), boxplot_stats[5, ],
			          seq_along(index), boxplot_stats[4, ], 
			          default.units = "native", gp = gp)
		grid.segments(seq_along(index), boxplot_stats[1, ],
			          seq_along(index), boxplot_stats[2, ], 
			          default.units = "native", gp = gp)
		grid.segments(seq_along(index) - 0.5*box_width, boxplot_stats[1, ],
			          seq_along(index) + 0.5*box_width, boxplot_stats[1, ], 
			          default.units = "native", gp = gp)
		grid.segments(seq_along(index) - 0.5*box_width, boxplot_stats[3, ],
			          seq_along(index) + 0.5*box_width, boxplot_stats[3, ], 
			          default.units = "native", gp = gp)
		if(outline) {	
			for(i in seq_along(value)) {
				l1 = value[[i]] > boxplot_stats[5,i]
				l1[is.na(l1)] = FALSE
				if(sum(l1)) grid.points(x = rep(i, sum(l1)), y = value[[i]][l1], 
					default.units = "native", gp = subset_gp(gp, i), pch = pch[i], size = size[i])
				l2 = value[[i]] < boxplot_stats[1,i]
				l2[is.na(l2)] = FALSE
				if(sum(l2)) grid.points(x = rep(i, sum(l2)), y = value[[i]][l2], 
					default.units = "native", gp = subset_gp(gp, i), pch = pch[i], size = size[i])
			}
		}
		if(axis_param$side == "left") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "right") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		if(border) grid.rect(gp = gpar(fill = "transparent"))
		popViewport()
	}
	
	if(which == "row") {
		fun = row_fun
	} else if(which == "column") {
		fun = column_fun
	}

	anno = AnnotationFunction(
		fun = fun,
		fun_name = "anno_boxplot",
		which = which,
		n = n,
		width = anno_size$width,
		height = anno_size$height,
		data_scale = data_scale,
		var_import = list(value, gp, border, box_width, axis, axis_param, axis_grob, data_scale, pch, size, outline)
	)

	anno@subset_rule$value = subset_vector
	anno@subset_rule$gp = subset_gp
	anno@subset_rule$pch = subset_vector
	anno@subset_rule$size = subset_vector
	
	anno@subsetable = TRUE

	anno@extended = update_anno_extend(anno, axis_grob, axis_param)

	return(anno) 
}

# == title
# Histogram Annotation
#
# == param
# -x A matrix or a list. If ``x`` is a matrix and if ``which`` is ``column``, statistics for boxplots
#    are calculated by columns, if ``which`` is ``row``, the calculation is done by rows.
# -which Whether it is a column annotation or a row annotation?
# -n_breaks Number of breaks for calculating histogram.
# -border Wether draw borders of the annotation region?
# -gp Graphic parameters for the boxes. The length of the graphic parameters should be one or the number of observations.
# -axis Whether to add axis?
# -axis_param parameters for controlling axis. See `default_axis_param` for all possible settings and default parameters.
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#histogram-annotation
#
# == example
# m = matrix(rnorm(1000), nc = 10)
# anno = anno_histogram(t(m), which = "row")
# draw(anno, test = "row histogram")
# anno = anno_histogram(t(m), which = "row", gp = gpar(fill = 1:10))
# draw(anno, test = "row histogram with color")
# anno = anno_histogram(t(m), which = "row", n_breaks = 20)
# draw(anno, test = "row histogram with color")
anno_histogram = function(x, which = c("column", "row"), n_breaks = 11, 
	border = FALSE, gp = gpar(fill = "#CCCCCC"), 
	axis = TRUE, axis_param = default_axis_param(which), 
	width = NULL, height = NULL) {
	
	ef = function() NULL
	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
		dev.null()
		ef = dev.off2
	} else {
		which = .ENV$current_annotation_which
	}

	on.exit(ef())

	anno_size = anno_width_and_height(which, width, height, unit(4, "cm"))

	## convert matrix all to list (or data frame)
	if(is.matrix(x)) {
		if(which == "column") {
			value = as.data.frame(x)
		} else if(which == "row") {
			value = as.data.frame(t(x))
		}
	} else {
		value = x
	}

	n = length(value)
	x_range =range(unlist(value), na.rm = TRUE)
	histogram_stats = lapply(value, hist, plot = FALSE, breaks = seq(x_range[1], x_range[2], length = n_breaks))
	histogram_breaks = lapply(histogram_stats, function(x) x$breaks)
	histogram_counts = lapply(histogram_stats, function(x) x$counts)

	xscale = range(unlist(histogram_breaks), na.rm = TRUE)
	xscale = xscale + c(-0.025, 0.025)*(xscale[2] - xscale[1])
	yscale = c(0, max(unlist(histogram_counts)))
	yscale[2] = yscale[2]*1.05

	gp = recycle_gp(gp, n)
	axis_param$direction = "normal"
	axis_param = validate_axis_param(axis_param, which)
	axis_grob = if(axis) construct_axis_grob(axis_param, which, xscale) else NULL

	row_fun = function(index, k = 1, N = 1) {

		n_all = length(value)
		value = value[index]
		
		n = length(index)
		histogram_breaks = histogram_breaks[index]
		histogram_counts = histogram_counts[index]

		gp = subset_gp(gp, index)
		for(i in seq_len(n)) {
			n_breaks = length(histogram_breaks[[i]])
			pushViewport(viewport(x = unit(0, "npc"), y = unit((n-i)/n, "npc"), height = unit(1/n, "npc"), just = c("left", "bottom"), xscale = xscale, yscale = yscale))
			grid.rect(x = histogram_breaks[[i]][-1], y = 0, width = histogram_breaks[[i]][-1] - histogram_breaks[[i]][-n_breaks], height = histogram_counts[[i]], just = c("right", "bottom"), default.units = "native", gp = subset_gp(gp, i))	
			popViewport()
		}
		pushViewport(viewport(xscale = xscale))
		if(axis_param$side == "top") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "bottom") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		if(border) grid.rect(gp = gpar(fill = "transparent"))
		popViewport()
	}
	column_fun = function(index, k = 1, N = 1) {

		n_all = length(value)
		value = value[index]
		
		foo = yscale
		yscale = xscale
		xscale = foo
		histogram_breaks = histogram_breaks[index]
		histogram_counts = histogram_counts[index]

		n = length(index)
		
		gp = subset_gp(gp, index)
		for(i in seq_len(n)) {
			n_breaks = length(histogram_breaks[[i]])
			pushViewport(viewport(y = unit(0, "npc"), x = unit(i/n, "npc"), width = unit(1/n, "npc"), 
				just = c("right", "bottom"), xscale = xscale, yscale = yscale))
			grid.rect(y = histogram_breaks[[i]][-1], x = 0, height = histogram_breaks[[i]][-1] - histogram_breaks[[i]][-n_breaks], 
				width = histogram_counts[[i]], just = c("left", "top"), default.units = "native", gp = subset_gp(gp, i))	
			popViewport()
		}
		pushViewport(viewport(yscale = yscale))
		if(axis_param$side == "left") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "right") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		if(border) grid.rect(gp = gpar(fill = "transparent"))
		popViewport()
	}
	
	if(which == "row") {
		fun = row_fun
	} else if(which == "column") {
		fun = column_fun
	}

	anno = AnnotationFunction(
		fun = fun,
		fun_name = "anno_histogram",
		which = which,
		width = anno_size$width,
		height = anno_size$height,
		n = n,
		data_scale = xscale,
		var_import = list(value, gp, border, axis, axis_param, axis_grob, xscale, yscale,
			histogram_breaks, histogram_counts)
	)

	anno@subset_rule$value = subset_vector
	anno@subset_rule$gp = subset_gp
	anno@subset_rule$histogram_breaks = subset_vector
	anno@subset_rule$histogram_counts = subset_vector
	
	anno@subsetable = TRUE

	anno@extended = update_anno_extend(anno, axis_grob, axis_param)

	return(anno) 
}

# == title
# Density Annotation
#
# == param
# -x A matrix or a list. If ``x`` is a matrix and if ``which`` is ``column``, statistics for boxplots
#    are calculated by columns, if ``which`` is ``row``, the calculation is done by rows.
# -which Whether it is a column annotation or a row annotation?
# -type Type of graphics to represent density distribution. "lines" for normal density plot; "violine" for violin plot
#       and "heatmap" for heatmap visualization of density distribution.
# -xlim Range on x-axis.
# -heatmap_colors A vector of colors for interpolating density values.
# -joyplot_scale Relative height of density distribution. A value higher than 1 increases the height of the density
#               distribution and the plot will represented as so-called "joyplot".
# -border Wether draw borders of the annotation region?
# -gp Graphic parameters for the boxes. The length of the graphic parameters should be one or the number of observations.
# -axis Whether to add axis?
# -axis_param parameters for controlling axis. See `default_axis_param` for all possible settings and default parameters.
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#density-annotation
#
# == example
# m = matrix(rnorm(100), 10)
# anno = anno_density(m, which = "row")
# draw(anno, test = "normal density")
# anno = anno_density(m, which = "row", type = "violin")
# draw(anno, test = "violin")
# anno = anno_density(m, which = "row", type = "heatmap")
# draw(anno, test = "heatmap")
# anno = anno_density(m, which = "row", type = "heatmap", 
#     heatmap_colors = c("white", "orange"))
# draw(anno, test = "heatmap, colors")
anno_density = function(x, which = c("column", "row"),
	type = c("lines", "violin", "heatmap"), xlim = NULL,
	heatmap_colors = rev(brewer.pal(name = "RdYlBu", n = 11)), 
	joyplot_scale = 1, border = TRUE, gp = gpar(fill = "#CCCCCC"),
	axis = TRUE, axis_param = default_axis_param(which),
	width = NULL, height = NULL) {
	
	ef = function() NULL
	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
		dev.null()
		ef = dev.off2
	} else {
		which = .ENV$current_annotation_which
	}

	on.exit(ef())

	anno_size = anno_width_and_height(which, width, height, unit(4, "cm"))

	## convert matrix all to list (or data frame)
	if(is.matrix(x)) {
		if(which == "column") {
			value = as.data.frame(x)
		} else if(which == "row") {
			value = as.data.frame(t(x))
		}
	} else {
		value = x
	}

	n = length(value)
	gp = recycle_gp(gp, n)
	type = match.arg(type)[1]

	n_all = length(value)
	density_stats = lapply(value, density, na.rm = TRUE)
	density_x = lapply(density_stats, function(x) x$x)
	density_y = lapply(density_stats, function(x) x$y)
	
	min_density_x = min(unlist(density_x))
	max_density_x = max(unlist(density_x))
	
	if(is.null(xlim)) {
		xscale = range(unlist(density_x), na.rm = TRUE)
	} else {
		xscale = xlim
		for(i in seq_len(n)) {
			l = density_x[[i]] >= xscale[1] & density_x[[i]] <= xscale[2]
			density_x[[i]] = density_x[[i]][l]
			density_y[[i]] = density_y[[i]][l]

			density_x[[i]] = c(density_x[[i]][ 1 ], density_x[[i]], density_x[[i]][ length(density_x[[i]]) ])
			density_y[[i]] = c(0, density_y[[i]], 0)
		}
	}
	xscale = xscale + c(-0.025, 0.025)*(xscale[2] - xscale[1])
	if(type == "lines") {
		yscale = c(0, max(unlist(density_y)))
		yscale[2] = yscale[2]*1.05
	} else if(type == "violin") {
		yscale = max(unlist(density_y))
		yscale = c(-yscale*1.05, yscale*1.05)
	} else if(type == "heatmap") {
		yscale = c(0, 1)
		min_y = min(unlist(density_y))
		max_y = max(unlist(density_y))
		col_fun = colorRamp2(seq(min_y, max_y, 
			length = length(heatmap_colors)), heatmap_colors)
	}

	axis_param$direction = "normal"
	axis_param = validate_axis_param(axis_param, which)
	axis_grob = if(axis) construct_axis_grob(axis_param, which, xscale) else NULL

	row_fun = function(index, k = 1, N = 1) {
		
		n = length(index)
		value = value[index]
		
		gp = subset_gp(gp, index)
		density_x = density_x[index]
		density_y = density_y[index]

		for(i in seq_len(n)) {
			pushViewport(viewport(x = unit(0, "npc"), y = unit((n-i)/n, "npc"), 
				just = c("left", "bottom"), height = unit(1/n, "npc"), xscale = xscale, 
				yscale = yscale))
			if(type == "lines") {
				grid.polygon(x = density_x[[i]], y = density_y[[i]]*joyplot_scale, 
					default.units = "native", gp = subset_gp(gp, i))
			} else if(type == "violin") {
				grid.polygon(x = c(density_x[[i]], rev(density_x[[i]])), 
					y = c(density_y[[i]], -rev(density_y[[i]])), default.units = "native", 
					gp = subset_gp(gp, i))
				box_stat = boxplot(value[[i]], plot = FALSE)$stat
				grid.lines(box_stat[1:2, 1], c(0, 0), default.units = "native", 
					gp = subset_gp(gp, i))
				grid.lines(box_stat[4:5, 1], c(0, 0), default.units = "native", 
					gp = subset_gp(gp, i))
				grid.points(box_stat[3, 1], 0, default.units = "native", pch = 3, 
					size = unit(1, "mm"), gp = subset_gp(gp, i))
			} else if(type == "heatmap") {
				n_breaks = length(density_x[[i]])
				grid.rect(x = density_x[[i]][-1], y = 0, 
					width = density_x[[i]][-1] - density_x[[i]][-n_breaks], height = 1, 
					just = c("right", "bottom"), default.units = "native", 
					gp = gpar(fill = col_fun((density_y[[i]][-1] + density_y[[i]][-n_breaks])/2), 
						col = NA))
				grid.rect(x = density_x[[i]][1], y = 0, width = density_x[[i]][1] - min_density_x, 
					height = 1, just = c("right", "bottom"), default.units = "native", 
					gp = gpar(fill = col_fun(0), col = NA))
				grid.rect(x = density_x[[i]][n_breaks], y = 0, 
					width = max_density_x - density_x[[i]][n_breaks], height = 1, 
					just = c("left", "bottom"), default.units = "native", 
					gp = gpar(fill = col_fun(0), col = NA))
			}
			popViewport()
		}
		pushViewport(viewport(xscale = xscale))
		if(axis_param$side == "top") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "bottom") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		if(border) grid.rect(gp = gpar(fill = "transparent"))
		popViewport()
	}
	column_fun = function(index, k = 1, N = 1) {

		n_all = length(value)
		value = value[index]
		
		foo = yscale
		yscale = xscale
		xscale = foo

		density_x = density_x[index]
		density_y = density_y[index]
		
		yscale = range(unlist(density_x), na.rm = TRUE)
		yscale = yscale + c(0, 0.05)*(yscale[2] - yscale[1])
		if(type == "lines") {
			xscale = c(0, max(unlist(density_y)))
			xscale[2] = xscale[2]*1.05
		} else if(type == "violin") {
			xscale = max(unlist(density_y))
			xscale = c(-xscale*1.05, xscale*1.05)
		} else if(type == "heatmap") {
			yscale = range(unlist(density_x), na.rm = TRUE)
			xscale = c(0, 1)
			min_y = min(unlist(density_y))
			max_y = max(unlist(density_y))
			col_fun = colorRamp2(seq(min_y, max_y, 
				length = length(heatmap_colors)), heatmap_colors)
		}

		n = length(index)
		gp = subset_gp(gp, index)

		for(i in rev(seq_len(n))) {
			pushViewport(viewport(y = unit(0, "npc"), x = unit(i/n, "npc"), width = unit(1/n, "npc"), 
				just = c("right", "bottom"), xscale = xscale, yscale = yscale))
			if(type == "lines") {
				grid.polygon(y = density_x[[i]], x = density_y[[i]]*joyplot_scale, 
					default.units = "native", gp = subset_gp(gp, i))
			} else if(type == "violin") {
				grid.polygon(y = c(density_x[[i]], rev(density_x[[i]])), 
					x = c(density_y[[i]], -rev(density_y[[i]])), default.units = "native", 
					gp = subset_gp(gp, i))
				box_stat = boxplot(value[[i]], plot = FALSE)$stat
				grid.lines(y = box_stat[1:2, 1], x = c(0, 0), default.units = "native", 
					gp = subset_gp(gp, i))
				grid.lines(y = box_stat[4:5, 1], x = c(0, 0), default.units = "native", 
					gp = subset_gp(gp, i))
				grid.points(y = box_stat[3, 1], x = 0, default.units = "native", pch = 3, 
					size = unit(1, "mm"), gp = subset_gp(gp, i))	
			} else if(type == "heatmap") {
				n_breaks = length(density_x[[i]])
				grid.rect(y = density_x[[i]][-1], x = 0, 
					height = density_x[[i]][-1] - density_x[[i]][-n_breaks], width = 1, 
					just = c("left", "top"), default.units = "native", 
					gp = gpar(fill = col_fun((density_y[[i]][-1] + density_y[[i]][-n_breaks])/2), 
						col = NA))
				grid.rect(y = density_x[[i]][1], x = 0, height = density_x[[i]][1] - min_density_x, 
					width = 1, just = c("left", "top"), default.units = "native", 
					gp = gpar(fill = col_fun(0), col = NA))
				grid.rect(y = density_x[[i]][n_breaks], x = 0, 
					height = max_density_x - density_x[[i]][n_breaks], width = 1, 
					just = c("left", "bottom"), default.units = "native", 
					gp = gpar(fill = col_fun(0), col = NA))
			}
			popViewport()
		}
		pushViewport(viewport(yscale = yscale))
		if(axis_param$side == "left") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "right") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		if(border) grid.rect(gp = gpar(fill = "transparent"))
		popViewport()
	}
	
	if(which == "row") {
		fun = row_fun
	} else if(which == "column") {
		fun = column_fun
	}

	anno = AnnotationFunction(
		fun = fun,
		fun_name = "anno_density",
		which = which,
		width = anno_size$width,
		height = anno_size$height,
		n = n,
		data_scale = xscale,
		var_import = list(value, gp, border, type, axis, axis_param, axis_grob, xscale, yscale, density_x,
			density_y, min_density_x, max_density_x, joyplot_scale, heatmap_colors)
	)

	if(type == "heatmap") {
		anno@var_env$col_fun = col_fun
	}

	anno@subset_rule$value = subset_vector
	anno@subset_rule$gp = subset_gp
	anno@subset_rule$density_x = subset_vector
	anno@subset_rule$density_y = subset_vector
	
	anno@subsetable = TRUE

	anno@extended = update_anno_extend(anno, axis_grob, axis_param)

	return(anno)
}

# == title
# Text Annotation
#
# == param
# -x A vector of text.
# -which Whether it is a column annotation or a row annotation?
# -gp Graphic parameters.
# -rot Rotation of the text, pass to `grid::grid.text`.
# -just Justification of text, pass to `grid::grid.text`.
# -offset Depracated, use ``location`` instead.
# -location Position of the text. By default ``rot``, ``just`` and ``location`` are automatically
#           inferred according to whether it is a row annotation or column annotation. The value
#           of ``location`` should be a `grid::unit` object, normally in ``npc`` unit. E.g. ``unit(0, 'npc')``
#           means the most left of the annotation region and ``unit(1, 'npc')`` means the most right of
#           the annotation region. 
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#text-annotation
#
# == example
# anno = anno_text(month.name)
# draw(anno, test = "month names")
# anno = anno_text(month.name, gp = gpar(fontsize = 16))
# draw(anno, test = "month names with fontsize")
# anno = anno_text(month.name, gp = gpar(fontsize = 1:12+4))
# draw(anno, test = "month names with changing fontsize")
# anno = anno_text(month.name, which = "row")
# draw(anno, test = "month names on rows")
# anno = anno_text(month.name, location = 0, rot = 45, 
#     just = "left", gp = gpar(col = 1:12))
# draw(anno, test = "with rotations")
# anno = anno_text(month.name, location = 1, 
#     rot = 45, just = "right", gp = gpar(fontsize = 1:12+4))
# draw(anno, test = "with rotations")
anno_text = function(x, which = c("column", "row"), gp = gpar(), 
	rot = guess_rot(), just = guess_just(), 
	offset = guess_location(), location = guess_location(),
	width = NULL, height = NULL) {

	ef = function() NULL
	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
		dev.null()
		ef = dev.off2
	} else {
		which = .ENV$current_annotation_which
	}

	on.exit(ef())

	n = length(x)
	gp = recycle_gp(gp, n)

	guess_rot = function() {
		ifelse(which == "column", 90, 0)
	}

	guess_just = function() {
		ifelse(which == "column", "right", "left")
	}

	guess_location = function() {
		unit(ifelse(which == "column", 1, 0), "npc")
	}

	rot = rot[1] %% 360
	just = just[1]
	if(!missing(offset)) {
		warning_wrap("`offset` is deprecated, use `location` instead.")
		if(missing(location)) {
			location = offset
		}
	}
	location = location[1]
	if(!inherits(location, "unit")) {
		location = unit(location, "npc")
	}

	if(which == "column") {
		if("right" %in% just) {
			if(rot < 180) {
				location = location - 0.5*grobHeight(textGrob("A", gp = gp))*abs(cos(rot/180*pi))
			} else {
				location = location + 0.5*grobHeight(textGrob("A", gp = gp))*abs(cos(rot/180*pi))
			}
		} else if("left" %in% just) {
			if(rot < 180) {
				location = location + 0.5*grobHeight(textGrob("A", gp = gp))*abs(cos(rot/180*pi))
			} else {
				location = location - 0.5*grobHeight(textGrob("A", gp = gp))*abs(cos(rot/180*pi))
			}
		}
	}

	if(which == "column") {
		if(missing(height)) {
			height = max_text_width(x, gp = gp)*abs(sin(rot/180*pi)) + grobHeight(textGrob("A", gp = gp))*abs(cos(rot/180*pi))
			height = convertHeight(height, "mm")
		}
		if(missing(width)) {
			width = unit(1, "npc")
		}
	}
	if(which == "row") {
		if(missing(width)) {
			width = max_text_width(x, gp = gp)*abs(cos(rot/180*pi)) + grobHeight(textGrob("A", gp = gp))*abs(sin(rot/180*pi))
			width = convertWidth(width, "mm")
		}
		if(missing(height)) {
			height = unit(1, "npc")
		}
	}

	anno_size = list(width = width, height = height)

	value = x

	row_fun = function(index) {
		n = length(index)
		gp = subset_gp(gp, index)
		gp2 = gp
        if("border" %in% names(gp2)) gp2$col = gp2$border
        if("fill" %in% names(gp2)) {
        	if(!"border" %in% names(gp2)) gp2$col = gp2$fill
        }
        if(any(c("border", "fill") %in% names(gp2))) {
        	grid.rect(y = (n - seq_along(index) + 0.5)/n, height = 1/n, gp = gp2)
        }
        
		grid.text(value[index], location, (n - seq_along(index) + 0.5)/n, gp = gp, just = just, rot = rot)
		# if(add_lines) {
		# 	if(n > 1) {
		# 		grid.segments(0, (n - seq_along(index)[-n])/n, 1, (n - seq_along(index)[-n])/n, default.units = "native")
		# 	}
		# }
	}
	column_fun = function(index, k = NULL, N = NULL, vp_name = NULL) {
		n = length(index)
		gp = subset_gp(gp, index)
		gp2 = gp
        if("border" %in% names(gp2)) gp2$col = gp2$border
        if("fill" %in% names(gp2)) {
        	if(!"border" %in% names(gp2)) gp2$col = gp2$fill
        }
        if(any(c("border", "fill") %in% names(gp2))) {
        	grid.rect(x = (seq_along(index) - 0.5)/n, width = 1/n, gp = gp2)
        }
        
		grid.text(value[index], (seq_along(index) - 0.5)/n, location, gp = gp, just = just, rot = rot)
	}

	if(which == "row") {
		fun = row_fun
	} else if(which == "column") {
		fun = column_fun
	}

	anno = AnnotationFunction(
		fun = fun,
		fun_name = "anno_text",
		which = which,
		width = width,
		height = height,
		n = n,
		var_import = list(value, gp, just, rot, location),
		show_name = FALSE
	)

	anno@subset_rule$value = subset_vector
	anno@subset_rule$gp = subset_gp

	anno@subsetable = TRUE

	return(anno)
}

# == title
# Joyplot Annotation
#
# == param
# -x A matrix or a list. If ``x`` is a matrix or a data frame, columns correspond to observations.
# -which Whether it is a column annotation or a row annotation?
# -gp Graphic parameters for the boxes. The length of the graphic parameters should be one or the number of observations.
# -scale Relative height of the curve. A value higher than 1 increases the height of the curve.
# -transparency Transparency of the filled colors. Value should be between 0 and 1.
# -axis Whether to add axis?
# -axis_param parameters for controlling axis. See `default_axis_param` for all possible settings and default parameters.
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#joyplot-annotation
#
# == example
# m = matrix(rnorm(1000), nc = 10)
# lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")]))
# anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row")
# draw(anno, test = "joyplot")
# anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", gp = gpar(fill = 1:10))
# draw(anno, test = "joyplot + col")
# anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", scale = 1)
# draw(anno, test = "joyplot + scale")
#
# m = matrix(rnorm(5000), nc = 50)
# lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")]))
# anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", gp = gpar(fill = NA), scale = 4)
# draw(anno, test = "joyplot")
anno_joyplot = function(x, which = c("column", "row"), gp = gpar(fill = "#000000"),
	scale = 2, transparency = 0.6,
	axis = TRUE, axis_param = default_axis_param(which),
	width = NULL, height = NULL) {
	
	ef = function() NULL
	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
		dev.null()
		ef = dev.off2
	} else {
		which = .ENV$current_annotation_which
	}

	on.exit(ef())

	anno_size = anno_width_and_height(which, width, height, unit(4, "cm"))

	## convert matrix all to list (or data frame)
	if(is.matrix(x) || is.data.frame(x)) {
		value = vector("list", ncol(x))
		for(i in seq_len(ncol(x))) {
			value[[i]] = cbind(seq_len(nrow(x)), x[, i])
		}
	} else if(inherits(x, "list")){
		if(all(sapply(x, is.atomic))) {
			if(length(unique(sapply(x, length))) == 1) {
				value = vector("list", length(x))
				for(i in seq_len(length(x))) {
					value[[i]] = cbind(seq_along(x[[i]]), x[[i]])
				}
			} else {
				stop_wrap("Since x is a list, x need to be a list of two-column matrices.")
			}
		} else {
			value = x
		}
	} else {
		stop_wrap("The input should be a list of two-column matrices or a matrix/data frame.")
	}

	xscale = range(lapply(value, function(x) x[, 1]), na.rm = TRUE)
	xscale = xscale + c(-0.025, 0.025)*(xscale[2] - xscale[1])
	yscale = range(lapply(value, function(x) x[, 2]), na.rm = TRUE)
	yscale[1] = 0
	yscale[2] = yscale[2]*1.05

	n = length(value)

	if(!"fill" %in% names(gp)) {
		gp$fill = "#000000"
	} 
	gp = recycle_gp(gp, n)
	gp$fill = add_transparency(gp$fill, transparency)
	axis_param$direction = "normal"
	axis_param = validate_axis_param(axis_param, which)
	axis_grob = if(axis) construct_axis_grob(axis_param, which, xscale) else NULL

	row_fun = function(index, k = 1, N = 1) {

		n_all = length(value)
		value = value[index]
		
		n = length(index)
		gp = subset_gp(gp, index)

		for(i in seq_len(n)) {
			pushViewport(viewport(x = unit(0, "npc"), y = unit((n-i)/n, "npc"), 
				just = c("left", "bottom"), height = unit(1/n, "npc"), xscale = xscale, 
				yscale = yscale))
			
			x0 = value[[i]][, 1]
			y0 = value[[i]][, 2]*scale
			x0 = c(x0[1], x0, x0[length(x0)])
			y0 = c(0, y0, 0)
			gppp = subset_gp(gp, i); gppp$col = NA
			grid.polygon(x = x0, y = y0, default.units = "native", gp = gppp)
			grid.lines(x = x0, y = y0, default.units = "native", 
				gp = subset_gp(gp, i))
			
			popViewport()
		}
		pushViewport(viewport(xscale = xscale))
		if(axis_param$side == "top") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "bottom") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		popViewport()
	}
	column_fun = function(index, k = 1, N = 1) {

		n_all = length(value)
		value = value[index]
		
		foo = yscale
		yscale = xscale
		xscale = foo
		
		n = length(index)
		
		gp = subset_gp(gp, index)

		for(i in seq_len(n)) {
			pushViewport(viewport(y = unit(0, "npc"), x = unit(i/n, "npc"), 
				width = unit(1/n, "npc"), just = c("right", "bottom"), xscale = xscale, 
				yscale = yscale))
			
			x0 = value[[i]][, 2]*scale
			y0 = value[[i]][ ,1]
			x0 = c(0, x0, 0)
			y0 = c(y0[1], y0, y0[length(y0)])
			gppp = subset_gp(gp, i); gppp$col = NA
			grid.polygon(y = y0, x = x0, default.units = "native", gp = gppp)
			grid.lines(y = y0, x = x0, default.units = "native", 
				gp = subset_gp(gp, i))
			
			popViewport()
		}
		pushViewport(viewport(yscale = yscale))
		if(axis_param$side == "left") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "right") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		popViewport()
	}
	
	if(which == "row") {
		fun = row_fun
	} else if(which == "column") {
		fun = column_fun
	}

	anno = AnnotationFunction(
		fun = fun,
		fun_name = "anno_joyplot",
		which = which,
		width = anno_size$width,
		height = anno_size$height,
		n = n,
		data_scale = xscale,
		var_import = list(value, gp, axis, axis_param, axis_grob, scale, yscale, xscale)
	)

	anno@subset_rule$value = subset_vector
	anno@subset_rule$gp = subset_gp

	anno@subsetable = TRUE

	anno@extended = update_anno_extend(anno, axis_grob, axis_param)

	return(anno)
}

# == title
# Horizon chart Annotation
#
# == param
# -x A matrix or a list. If ``x`` is a matrix or a data frame, columns correspond to observations.
# -which Whether it is a column annotation or a row annotation?
# -gp Graphic parameters for the boxes. The length of the graphic parameters should be one or the number of observations.
#     There are two unstandard parameters specificly for horizon chart: ``pos_fill`` and ``neg_fill`` controls the filled
#     color for positive values and negative values.
# -n_slice Number of slices on y-axis.
# -slice_size Height of the slice. If the value is not ``NULL``, ``n_slice`` will be recalculated. 
# -negative_from_top Whether the areas for negative values start from the top or the bottom of the plotting region?
# -normalize Whether normalize ``x`` by max(abs(x)).
# -gap Gap size of neighbouring horizon chart.
# -axis Whether to add axis?
# -axis_param parameters for controlling axis. See `default_axis_param` for all possible settings and default parameters.
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
#
# == detail
# Horizon chart as row annotation is only supported.
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#horizon-chart-annotation
#
# == example
# lt = lapply(1:20, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1)
# anno = anno_horizon(lt, which = "row")
# draw(anno, test = "horizon chart")
# anno = anno_horizon(lt, which = "row", 
#     gp = gpar(pos_fill = "orange", neg_fill = "darkgreen"))
# draw(anno, test = "horizon chart, col")
# anno = anno_horizon(lt, which = "row", negative_from_top = TRUE)
# draw(anno, test = "horizon chart + negative_from_top")
# anno = anno_horizon(lt, which = "row", gap = unit(1, "mm"))
# draw(anno, test = "horizon chart + gap")
# anno = anno_horizon(lt, which = "row", 
#     gp = gpar(pos_fill = rep(c("orange", "red"), each = 10),
#     neg_fill = rep(c("darkgreen", "blue"), each = 10)))
# draw(anno, test = "horizon chart, col")
anno_horizon = function(x, which = c("column", "row"), 
	gp = gpar(pos_fill = "#D73027", neg_fill = "#313695"),
	n_slice = 4, slice_size = NULL, negative_from_top = FALSE, 
	normalize = TRUE, gap = unit(0, "mm"),
	axis = TRUE, axis_param = default_axis_param(which),
	width = NULL, height = NULL) {

	ef = function() NULL
	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
		dev.null()
		ef = dev.off2
	} else {
		which = .ENV$current_annotation_which
	}

	on.exit(ef())

	anno_size = anno_width_and_height(which, width, height, unit(4, "cm"))

	## convert matrix all to list (or data frame)
	if(is.matrix(x) || is.data.frame(x)) {
		value = vector("list", ncol(x))
		for(i in seq_len(ncol(x))) {
			value[[i]] = cbind(seq_len(nrow(x)), x[, i])
		}
	} else if(inherits(x, "list")){
		if(all(sapply(x, is.atomic))) {
			if(length(unique(sapply(x, length))) == 1) {
				value = vector("list", length(x))
				for(i in seq_len(length(x))) {
					value[[i]] = cbind(seq_along(x[[i]]), x[[i]])
				}
			} else {
				stop_wrap("Since x is a list, x need to be a list of two-column matrices.")
			}
		} else {
			value = x
		}
	} else {
		stop_wrap("The input should be a list of two-column matrices or a matrix/data frame.")
	}

	if(is.null(gp$pos_fill)) gp$pos_fill = "#D73027"
	if(is.null(gp$neg_fill)) gp$neg_fill = "#313695"

	if("fill" %in% names(gp)) {
		foo = unlist(lapply(value, function(x) x[, 2]))
		if(all(foo >= 0)) {
			gp$pos_fill = gp$fill
		} else if(all(foo <= 0)) {
			gp$neg_fill = gp$fill
		} else {
			gp = gpar(pos_fill = "#D73027", neg_fill = "#313695")
		}
	}

	if(which == "column") {
		stop_wrap("anno_horizon() does not support column annotation.")
	}

	if(normalize) {
		value = lapply(value, function(m) {
			m[, 2] = m[, 2]/max(abs(m[, 2]))
			m
		})
	}

	n = length(value)
	xscale = range(lapply(value, function(x) x[, 1]), na.rm = TRUE)
	yscale = range(lapply(value, function(x) abs(x[, 2])), na.rm = TRUE)
	
	axis_param$direction = "normal"
	axis_param = validate_axis_param(axis_param, which)
	axis_grob = if(axis) construct_axis_grob(axis_param, which, xscale) else NULL

	row_fun = function(index, k = 1, N = 1) {

		n_all = length(value)
		value = value[index]
		
		if(is.null(slice_size)) {
			slice_size = yscale[2]/n_slice
		} 
		n_slice = ceiling(yscale[2]/slice_size)
		
		n = length(index)
		
		gp = subset_gp(gp, index)

		for(i in seq_len(n)) {
			pushViewport(viewport(x = unit(0, "npc"), y = unit((n-i)/n, "npc"), just = c("left", "bottom"), 
				height = unit(1/n, "npc") - gap))
			sgp = subset_gp(gp, i)
			horizon_chart(value[[i]][, 1], value[[i]][, 2], n_slice = n_slice, slice_size = slice_size, 
				negative_from_top = negative_from_top, pos_fill = sgp$pos_fill, neg_fill = sgp$neg_fill)
			grid.rect(gp = gpar(fill = "transparent"))
			
			popViewport()
		}
		pushViewport(viewport(xscale = xscale))
		if(axis_param$side == "top") {
			if(k > 1) axis = FALSE
		} else if(axis_param$side == "bottom") {
			if(k < N) axis = FALSE
		}
		if(axis) grid.draw(axis_grob)
		popViewport()
	}
	column_fun = function(index) {

	}
	
	if(which == "row") {
		fun = row_fun
	} else if(which == "column") {
		fun = column_fun
	}

	anno = AnnotationFunction(
		fun = fun,
		fun_name = "anno_horizon",
		which = which,
		width = anno_size$width,
		height = anno_size$height,
		n = n,
		data_scale = xscale,
		var_import = list(value, gp, axis, axis_param, axis_grob, n_slice, slice_size,
			negative_from_top, xscale, yscale, gap)
	)

	anno@subset_rule$value = subset_vector
	anno@subset_rule$gp = subset_gp

	anno@subsetable = TRUE

	anno@extended = update_anno_extend(anno, axis_grob, axis_param)

	return(anno)
}

horizon_chart = function(x, y, n_slice = 4, slice_size, pos_fill = "#D73027", neg_fill = "#313695",
	negative_from_top = FALSE) {

	if(missing(slice_size)) {
		slice_size = max(abs(y))/n_slice
	}
	n_slice = ceiling(max(abs(y))/slice_size)

	if(n_slice == 0) {
		return(invisible(NULL))
	}

	pos_col_fun = colorRamp2(c(0, n_slice), c("white", pos_fill))
	neg_col_fun = colorRamp2(c(0, n_slice), c("white", neg_fill))
	pushViewport(viewport(xscale = range(x), yscale = c(0, slice_size)))
	for(i in seq_len(n_slice)) {
		l1 = y >= (i-1)*slice_size & y < i*slice_size
		l2 = y < (i-1)*slice_size
		l3 = y >= i*slice_size
		if(any(l1)) {
			x2 = x
			y2 = y
			y2[l1] = y2[l1] - slice_size*(i-1)
			y2[l3] = slice_size
			x2[l2] = NA
			y2[l2] = NA

			add_horizon_polygon(x2, y2, gp = gpar(fill = pos_col_fun(i), col = NA), 
				default.units = "native")
		}
	}
	y = -y
	for(i in seq_len(n_slice)) {
		l1 = y >= (i-1)*slice_size & y < i*slice_size
		l2 = y < (i-1)*slice_size
		l3 = y >= i*slice_size
		if(any(l1)) {
			x2 = x
			y2 = y
			y2[l1] = y2[l1] - slice_size*(i-1)
			y2[l3] = slice_size
			x2[l2] = NA
			y2[l2] = NA
			add_horizon_polygon(x2, y2, slice_size = slice_size, from_top = negative_from_top, 
				gp = gpar(fill = neg_col_fun(i), col = NA), default.units = "native")
		}
	}
	popViewport()
}

# x and y may contain NA, split x and y by NA gaps, align the bottom to y = 0
add_horizon_polygon = function(x, y, slice_size = NULL, from_top = FALSE, ...) {
	ltx = split_vec_by_NA(x)
	lty = split_vec_by_NA(y)

	for(i in seq_along(ltx)) {
		x0 = ltx[[i]]
		y0 = lty[[i]]
		if(from_top) {
			x0 = c(x0[1], x0, x0[length(x0)])
			y0 = c(slice_size, slice_size - y0, slice_size)
		} else {
			x0 = c(x0[1], x0, x0[length(x0)])
			y0 = c(0, y0, 0)
		}
		grid.polygon(x0, y0, ...)
	}
}

# https://stat.ethz.ch/pipermail/r-help/2010-April/237031.html
split_vec_by_NA = function(x) {
	idx = 1 + cumsum(is.na(x))
	not.na = !is.na(x)
	split(x[not.na], idx[not.na])
}


# == title
# Points as Row Annotation
#
# == param
# -... pass to `anno_points`.
#
# == details
# A wrapper of `anno_points` with pre-defined ``which`` to ``row``.
#
# You can directly use `anno_points` for row annotation if you call it in `rowAnnotation`.
#
# == value
# See help page of `anno_points`.
#
row_anno_points = function(...) {
	if(exists(".__under_SingleAnnotation__", envir = parent.frame())) {
		message_wrap("From version 1.99.0, you can directly use `anno_points()` for row annotation if you call it in `rowAnnotation()`.")
	}
	anno_points(..., which = "row")
}


# == title
# Barplots as Row Annotation
#
# == param
# -... pass to `anno_barplot`.
#
# == details
# A wrapper of `anno_barplot` with pre-defined ``which`` to ``row``.
#
# You can directly use `anno_barplot` for row annotation if you call it in `rowAnnotation`.
#
# == value
# See help page of `anno_barplot`.
#
row_anno_barplot = function(...) {
	if(exists(".__under_SingleAnnotation__", envir = parent.frame())) {
		message_wrap("From version 1.99.0, you can directly use `anno_barplot()` for row annotation if you call it in `rowAnnotation()`.")
	}
	anno_barplot(..., which = "row")
}


# == title
# Boxplots as Row Annotation
#
# == param
# -... pass to `anno_boxplot`.
#
# == details
# A wrapper of `anno_boxplot` with pre-defined ``which`` to ``row``.
#
# You can directly use `anno_boxplot` for row annotation if you call it in `rowAnnotation`.
#
# == value
# See help page of `anno_boxplot`.
#
row_anno_boxplot = function(...) {
	if(exists(".__under_SingleAnnotation__", envir = parent.frame())) {
		message_wrap("From version 1.99.0, you can directly use `anno_boxplot()` for row annotation if you call it in `rowAnnotation()`.")
	}
	anno_boxplot(..., which = "row")
}

# == title
# Histograms as Row Annotation
#
# == param
# -... pass to `anno_histogram`.
#
# == details
# A wrapper of `anno_histogram` with pre-defined ``which`` to ``row``.
#
# You can directly use `anno_histogram` for row annotation if you call it in `rowAnnotation`.
#
# == value
# See help page of `anno_histogram`.
#
row_anno_histogram = function(...) {
	if(exists(".__under_SingleAnnotation__", envir = parent.frame())) {
		message_wrap("From version 1.99.0, you can directly use `anno_histogram()` for row annotation if you call it in `rowAnnotation()`.")
	}
	anno_histogram(..., which = "row")
}

# == title
# Density as Row Annotation
#
# == param
# -... pass to `anno_density`.
#
# == details
# A wrapper of `anno_density` with pre-defined ``which`` to ``row``.
#
# You can directly use `anno_density` for row annotation if you call it in `rowAnnotation`.
#
# == value
# See help page of `anno_density`.
#
row_anno_density = function(...) {
	if(exists(".__under_SingleAnnotation__", envir = parent.frame())) {
		message_wrap("From version 1.99.0, you can directly use `anno_density()` for row annotation if you call it in `rowAnnotation()`.")
	}
	anno_density(..., which = "row")
}

# == title
# Text as Row Annotation
#
# == param
# -... pass to `anno_text`.
#
# == details
# A wrapper of `anno_text` with pre-defined ``which`` to ``row``.
#
# You can directly use `anno_text` for row annotation if you call it in `rowAnnotation`.
#
# == value
# See help page of `anno_text`.
#
row_anno_text = function(...) {
	if(exists(".__under_SingleAnnotation__", envir = parent.frame())) {
		message_wrap("From version 1.99.0, you can directly use `anno_text()` for row annotation if you call it in `rowAnnotation()`.")
	}
	anno_text(..., which = "row")
}

# == title
# Link annotation with labels
#
# == param
# -at Numeric index from the original matrix.
# -labels Corresponding labels.
# -which Whether it is a column annotation or a row annotation?
# -side Side of the labels. If it is a column annotation, valid values are "top" and "bottom";
#       If it is a row annotation, valid values are "left" and "right".
# -lines_gp Please use ``link_gp`` instead.
# -link_gp Graphic settings for the segments.
# -labels_gp Graphic settings for the labels.
# -labels_rot Rotations of labels, scalar.
# -padding Padding between neighbouring labels in the plot.
# -link_width Width of the segments.
# -link_height Similar as ``link_width``, used for column annotation.
# -extend By default, the region for the labels has the same width (if it is a column annotation) or
#         same height (if it is a row annotation) as the heatmap. The size can be extended by this options.
#         The value can be a proportion number or  a `grid::unit` object. The length can be either one or two.
#
# == details
# Sometimes there are many rows or columns in the heatmap and we want to mark some of the rows.
# This annotation function is used to mark these rows and connect labels and corresponding rows
# with links.
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#mark-annotation
#
# == example
# anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], which = "row")
# draw(anno, index = 1:100, test = "anno_mark")
#
# m = matrix(1:1000, byrow = TRUE, nr = 100)
# anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], which = "row")
# Heatmap(m, cluster_rows = FALSE, cluster_columns = FALSE) + rowAnnotation(mark = anno)
# Heatmap(m) + rowAnnotation(mark = anno)
anno_mark = function(at, labels, which = c("column", "row"), 
	side = ifelse(which == "column", "top", "right"),
	lines_gp = gpar(), labels_gp = gpar(), 
	labels_rot = ifelse(which == "column", 90, 0), padding = unit(1, "mm"), 
	link_width = unit(5, "mm"), link_height = link_width,
	link_gp = lines_gp, 
	extend = unit(0, "mm")) {

	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
	} else {
		which = .ENV$current_annotation_which
	}

	if(!is.numeric(at)) {
		stop_wrap(paste0("`at` should be numeric ", which, " index corresponding to the matrix."))
	}
	
	n = length(at)
	if(n < 1) {
		stop_wrap("Length of `at` should be positive.")
	}
	link_gp = recycle_gp(link_gp, n)
	labels_gp = recycle_gp(labels_gp, n)
	labels2index = structure(seq_along(at), names = as.character(labels))
	at2labels = structure(labels, names = at)

	if(length(extend) == 1) extend = rep(extend, 2)
	if(length(extend) > 2) extend = extend[1:2]
	if(!inherits(extend, "unit")) extend = unit(extend, "npc")

	if(which == "row") {
		height = unit(1, "npc")
		width = link_width + max_text_width(labels, gp = labels_gp, rot = labels_rot)
	} else {
		height = link_width + max_text_height(labels, gp = labels_gp, rot = labels_rot)
		width = unit(1, "npc")
	}

	.pos = NULL
	.scale = NULL

	labels_rot = labels_rot %% 360

	if(!inherits(padding, "unit")) {
		padding = convertHeight(padding*grobHeight(textGrob("a", gp = subset_gp(labels_gp, 1))), "mm")
	}

	# a map between row index and positions
	# pos_map = 
	row_fun = function(index) {

		if(is_RStudio_current_dev()) {
			if(ht_opt$message) {
				message_wrap("It seems you are using RStudio IDE. `anno_mark()` needs to work with the physical size of the graphics device. It only generates correct plot in the figure panel, while in the zoomed plot (by clicking the icon 'Zoom') or in the exported plot (by clicking the icon 'Export'), the connection to heatmap rows/columns might be wrong. You can directly use e.g. pdf() to save the plot into a file.\n\nUse `ht_opt$message = FALSE` to turn off this message.")
			}
		}

		n = length(index)
		# adjust at and labels
		at = intersect(index, at)
		if(length(at) == 0) {
			return(NULL)
		}
		labels = rev(at2labels[as.character(at)])

		labels_gp = subset_gp(labels_gp, labels2index[as.character(labels)])
		link_gp = subset_gp(link_gp, labels2index[as.character(labels)])

		if(is.null(.scale)) {
			.scale = c(0.5, n+0.5)
		}
		pushViewport(viewport(xscale = c(0, 1), yscale = .scale))
		if(inherits(extend, "unit")) extend = convertHeight(extend, "native", valueOnly = TRUE)
		if(labels_rot %in% c(90, 270)) {
			text_height = convertHeight(text_width(labels, gp = labels_gp) + padding, "native", valueOnly = TRUE)
		} else {
			text_height = convertHeight(text_height(labels, gp = labels_gp) + padding, "native", valueOnly = TRUE)
		}
		if(is.null(.pos)) {
			i2 = rev(which(index %in% at))
			pos = n-i2+1 # position of rows
		} else {
			pos = .pos[rev(which(index %in% at))]
		}
		h1 = pos - text_height*0.5
		h2 = pos + text_height*0.5
		pos_adjusted = smartAlign(h1, h2, c(.scale[1] - extend[1], .scale[2] + extend[2]))
		h = (pos_adjusted[, 1] + pos_adjusted[, 2])/2

		n2 = length(labels)
		if(side == "right") {
			if(labels_rot == 90) {
				just = c("center", "top")
			} else if(labels_rot == 270) {
				just = c("center", "bottom")
			} else if(labels_rot > 90 & labels_rot < 270 ) {
				just = c("right", "center")
			} else {
				just = c("left", "center")
			}
		} else {
			if(labels_rot == 90) {
				just = c("center", "bottom")
			} else if(labels_rot == 270) {
				just = c("center", "top")
			} else if(labels_rot > 90 & labels_rot < 270 ) {
				just = c("left", "center")
			} else {
				just = c("right", "center")
			}
		}
		if(side == "right") {
			grid.text(labels, rep(link_width, n2), h, default.units = "native", gp = labels_gp, rot = labels_rot, just = just)
			link_width = link_width - unit(1, "mm")
			grid.segments(unit(rep(0, n2), "npc"), pos, rep(link_width*(1/3), n2), pos, default.units = "native", gp = link_gp)
			grid.segments(rep(link_width*(1/3), n2), pos, rep(link_width*(2/3), n2), h, default.units = "native", gp = link_gp)
			grid.segments(rep(link_width*(2/3), n2), h, rep(link_width, n2), h, default.units = "native", gp = link_gp)
		} else {
			grid.text(labels, unit(1, "npc")-rep(link_width, n2), h, default.units = "native", gp = labels_gp, rot = labels_rot, just = just)
			link_width = link_width - unit(1, "mm")
			grid.segments(unit(rep(1, n2), "npc"), pos, unit(1, "npc")-rep(link_width*(1/3), n2), pos, default.units = "native", gp = link_gp)
			grid.segments(unit(1, "npc")-rep(link_width*(1/3), n2), pos, unit(1, "npc")-rep(link_width*(2/3), n2), h, default.units = "native", gp = link_gp)
			grid.segments(unit(1, "npc")-rep(link_width*(2/3), n2), h, unit(1, "npc")-rep(link_width, n2), h, default.units = "native", gp = link_gp)
		}
		upViewport()
	}
	column_fun = function(index) {

		if(is_RStudio_current_dev()) {
			if(ht_opt$message) {
				message_wrap("It seems you are using RStudio IDE. `anno_mark()` needs to work with the physical size of the graphics device. It only generates correct plot in the figure panel, while in the zoomed plot (by clicking the icon 'Zoom') or in the exported plot (by clicking the icon 'Export'), the connection to heatmap rows/columns might be wrong. You can directly use e.g. pdf() to save the plot into a file.\n\nUse `ht_opt$message = FALSE` to turn off this message.")
			}
		}
		
		n = length(index)
		# adjust at and labels
		at = intersect(index, at)
		if(length(at) == 0) {
			return(NULL)
		}
		labels = at2labels[as.character(at)]
		
		labels_gp = subset_gp(labels_gp, labels2index[as.character(labels)])
		link_gp = subset_gp(link_gp, labels2index[as.character(labels)])

		if(is.null(.scale)) {
			.scale = c(0.5, n+0.5)
		}
		pushViewport(viewport(yscale = c(0, 1), xscale = .scale))
		if(inherits(extend, "unit")) extend = convertWidth(extend, "native", valueOnly = TRUE)
		if(labels_rot %in% c(0, 180)) {
			text_height = convertWidth(text_width(labels, gp = labels_gp) + padding, "native", valueOnly = TRUE)
		} else {
			text_height = convertWidth(text_height(labels, gp = labels_gp) + padding, "native", valueOnly = TRUE)
		}
		if(is.null(.pos)) {
			i2 = which(index %in% at)
			pos = i2 # position of rows
		} else {
			pos = .pos[which(index %in% at)]
		}
		h1 = pos - text_height*0.5
		h2 = pos + text_height*0.5
		pos_adjusted = smartAlign(h1, h2, c(.scale[1] - extend[1], .scale[2] + extend[2]))
		h = (pos_adjusted[, 1] + pos_adjusted[, 2])/2

		n2 = length(labels)
		if(side == "top") {
			if(labels_rot == 0) {
				just = c("center", "bottom")
			} else if(labels_rot == 180) {
				just = c("center", "top")
			} else if(labels_rot > 0 & labels_rot < 180 ) {
				just = c("left", "center")
			} else {
				just = c("right", "center")
			}
		} else {
			if(labels_rot == 0) {
				just = c("center", "top")
			} else if(labels_rot == 180) {
				just = c("center", "bottom")
			} else if(labels_rot > 0 & labels_rot < 180 ) {
				just = c("right", "center")
			} else {
				just = c("left", "center")
			}
		}
		if(side == "top") {
			grid.text(labels, h, rep(link_height, n2), default.units = "native", gp = labels_gp, rot = labels_rot, just = just)
			link_height = link_height - unit(1, "mm")
			grid.segments(pos, unit(rep(0, n2), "npc"), pos, rep(link_height*(1/3), n2), default.units = "native", gp = link_gp)
			grid.segments(pos, rep(link_height*(1/3), n2), h, rep(link_height*(2/3), n2), default.units = "native", gp = link_gp)
			grid.segments(h, rep(link_height*(2/3), n2), h, rep(link_height, n), default.units = "native", gp = link_gp)
		} else {
			grid.text(labels, h, unit(1, "npc")-rep(link_height, n2), default.units = "native", gp = labels_gp, rot = labels_rot, just = just)
			link_height = link_height - unit(1, "mm")
			grid.segments(pos, unit(rep(1, n2), "npc"), pos, unit(1, "npc")-rep(link_height*(1/3), n2), default.units = "native", gp = link_gp)
			grid.segments(pos, unit(1, "npc")-rep(link_height*(1/3), n2), h, unit(1, "npc")-rep(link_height*(2/3), n2), default.units = "native", gp = link_gp)
			grid.segments(h, unit(1, "npc")-rep(link_height*(2/3), n2), h, unit(1, "npc")-rep(link_height, n2), default.units = "native", gp = link_gp)
		}
		upViewport()
	}

	if(which == "row") {
		fun = row_fun
	} else if(which == "column") {
		fun = column_fun
	}
	
	anno = AnnotationFunction(
		fun = fun,
		fun_name = "anno_mark",
		which = which,
		width = width,
		height = height,
		n = -1,
		var_import = list(at, labels2index, at2labels, link_gp, labels_gp, labels_rot, padding, .pos, .scale,
			side, link_width, link_height, extend),
		show_name = FALSE
	)

	anno@subset_rule$at = subset_by_intersect

	anno@subsetable = TRUE
	return(anno)
}

subset_by_intersect = function(x, i) {
	intersect(x, i)
}

# == title
# Link Annotation
#
# == param
# -... Pass to `anno_zoom`.
#
# == details
# This function is the same as `anno_zoom`. It links subsets of rows or columns to a list of graphic regions.
#
anno_link = function(...) {
	anno_zoom(...)
}

# == title
# Summary Annotation
#
# == param
# -which Whether it is a column annotation or a row annotation?
# -border Wether draw borders of the annotation region?
# -bar_width Relative width of the bars. The value should be smaller than one.
# -axis Whether to add axis?
# -axis_param parameters for controlling axis. See `default_axis_param` for all possible settings and default parameters.
# -ylim Data ranges. ``ylim`` for barplot is enforced to be ``c(0, 1)``.
# -extend The extension to both side of ``ylim``. The value is a percent value corresponding to ``ylim[2] - ylim[1]``. This argument is only for boxplot.
# -outline Whether draw outline of boxplots?
# -box_width Relative width of boxes. The value should be smaller than one.
# -pch Point style.
# -size Point size.
# -gp Graphic parameters.
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
#
# == detail
# ``anno_summary`` is a special annotation function that it only works for one-column or one-row heatmap. 
# It shows the summary of the values in the heatmap. If the values in the heatmap is discrete, 
# the proportion of each level (the sum is normalized to 1) is visualized as stacked barplot. If the heatmap
# is split into multiple slices, multiple bars are put in the annotation. If the value is continuous, boxplot is used.
#
# In the barplot, the color schema is used as the same as the heatmap, while for the boxplot, the color needs
# to be controlled by ``gp``.
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#summary-annotation
#
# == example
# ha = HeatmapAnnotation(summary = anno_summary(height = unit(4, "cm")))
# v = sample(letters[1:2], 50, replace = TRUE)
# split = sample(letters[1:2], 50, replace = TRUE)
# Heatmap(v, top_annotation = ha, width = unit(1, "cm"), split = split)
#
# ha = HeatmapAnnotation(summary = anno_summary(gp = gpar(fill = 2:3), height = unit(4, "cm")))
# v = rnorm(50)
# Heatmap(v, top_annotation = ha, width = unit(1, "cm"), split = split)
#
anno_summary = function(which = c("column", "row"), border = TRUE, bar_width = 0.8, 
	axis = TRUE, axis_param = default_axis_param(which),
	ylim = NULL, extend = 0.05, outline = TRUE, box_width = 0.6,
	pch = 1, size = unit(2, "mm"), gp = gpar(),
	width = NULL, height = NULL) {

	ef = function() NULL
	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
		dev.null()
		ef = dev.off2
	} else {
		which = .ENV$current_annotation_which
	}

	on.exit(ef())

	anno_size = anno_width_and_height(which, width, height, unit(2, "cm"))

	axis_param = validate_axis_param(axis_param, which)
	if(is.null(ylim)) {
		axis_grob = if(axis) construct_axis_grob(axis_param, which, c(0, 1)) else NULL
	} else {
		axis_grob = if(axis) construct_axis_grob(axis_param, which, ylim) else NULL
	}

	row_fun = function(index) {
		ht = get("object", envir = parent.frame(7))
		mat = ht@matrix
		cm = ht@matrix_color_mapping
		order_list = ht@column_order_list
		ng = length(order_list)

		if(cm@type == "discrete") {
			tl = lapply(order_list, function(od) table(mat[1, od]))
			tl = lapply(tl, function(x) x/sum(x))

			pushViewport(viewport(yscale = c(0.5, ng+0.5), xscale = c(0, 1)))
			for(i in 1:ng) {
				x = i
				y = cumsum(tl[[i]])
				grid.rect(y, x, height = bar_width, width = tl[[i]], just = "right", gp = gpar(fill = map_to_colors(cm, names(y))), default.units = "native")
			}
			if(axis) grid.draw(axis_grob)
			if(border) grid.rect(gp = gpar(fill = "transparent"))
			popViewport()
		} else {
			
		}
	}
	column_fun = function(index) {
		ht = get("object", envir = parent.frame(7))
		mat = ht@matrix
		cm = ht@matrix_color_mapping
		order_list = ht@row_order_list
		ng = length(order_list)

		if(cm@type == "discrete") {
			if(!is.null(ylim)) {
				stop_wrap("For discrete matrix, `ylim` is not allowed to set. It is always c(0, 1).")
			}
			tl = lapply(order_list, function(od) table(mat[od, 1]))
			tl = lapply(tl, function(x) x/sum(x))

			pushViewport(viewport(xscale = c(0.5, ng+0.5), yscale = c(0, 1)))
			for(i in 1:ng) {
				x = i
				y = cumsum(tl[[i]])
				grid.rect(x, y, width = bar_width, height = tl[[i]], just = "top", gp = gpar(fill = map_to_colors(cm, names(y))), default.units = "native")
			}
			if(axis) grid.draw(axis_grob)
			if(border) grid.rect(gp = gpar(fill = "transparent"))
			popViewport()
		} else {
			vl = lapply(order_list, function(od) mat[od, 1])
			nv = length(vl)
			if(is.null(ylim)) {
				if(!outline) {
					boxplot_stats = boxplot(vl, plot = FALSE)$stats
					data_scale = range(boxplot_stats)
				} else {
					data_scale = range(vl, na.rm = TRUE)
				}
			} else {
				data_scale = ylim
			}
			data_scale = data_scale + c(-extend, extend)*(data_scale[2] - data_scale[1])

			if(is.null(ylim)) {
				axis_param = validate_axis_param(axis_param, which)
				axis_grob = if(axis) construct_axis_grob(axis_param, which, data_scale) else NULL
			}

			gp = recycle_gp(gp, nv)
			if(length(pch) == 1) pch = rep(pch, nv)
			if(length(size) == 1) size = rep(size, nv)

			pushViewport(viewport(xscale = c(0.5, ng+0.5), yscale = data_scale))
			for(i in 1:ng) {
				x = i
				v = vl[[i]]
				grid.boxplot(v, pos = x, box_width = box_width, gp = subset_gp(gp, i),
					pch = pch, size = size, outline = outline)
			}
			if(axis) grid.draw(axis_grob)
			if(border) grid.rect(gp = gpar(fill = "transparent"))
			popViewport()
		}
	}

	if(which == "row") {
		fun = row_fun
	} else if(which == "column") {
		fun = column_fun
	}
	
	anno = AnnotationFunction(
		fun = fun,
		fun_name = "anno_summary",
		which = which,
		width = width,
		height = height,
		var_import = list(bar_width, border, axis, axis_grob, axis_param, which, ylim, extend, 
			outline, box_width, pch, size, gp),
		n = 1,
		show_name = FALSE
	)

	anno@subsetable = FALSE
	anno@extended = update_anno_extend(anno, axis_grob, axis_param)

	return(anno)
}

# == title
# Block annotation
#
# == param
# -gp Graphic parameters.
# -labels Labels put on blocks.
# -labels_gp Graphic parameters for labels.
# -labels_rot Rotation for labels.
# -which Is it a row annotation or a column annotation?
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
# -show_name Whether show annotatio name.
#
# == details
# The block annotation is used for representing slices. The length of all arguments should be 1 or the number of slices.
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#block-annotation
#
# == example
# Heatmap(matrix(rnorm(100), 10), 
#     top_annotation = HeatmapAnnotation(foo = anno_block(gp = gpar(fill = 2:4),
#         labels = c("group1", "group2", "group3"), labels_gp = gpar(col = "white"))),
#     column_km = 3,
#     left_annotation = rowAnnotation(foo = anno_block(gp = gpar(fill = 2:4),
#         labels = c("group1", "group2", "group3"), labels_gp = gpar(col = "white"))),
#     row_km = 3)
anno_block = function(gp = gpar(), labels = NULL, labels_gp = gpar(), labels_rot = ifelse(which == "row", 90, 0),
	which = c("column", "row"), width = NULL, height = NULL, show_name = FALSE) {

	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
	} else {
		which = .ENV$current_annotation_which
	}
	if(length(labels)) {
		if(which == "column") {
			if(missing(height)) {
				height = grobHeight(textGrob(labels, rot = labels_rot, gp = labels_gp))
				height = height + unit(5, "mm")
			} else {
				if(!inherits(height, "unit")) {
					stop_wrap("Since you specified `height`, the value should be `unit` object.")
				}
			}
		} else {
			if(missing(width)) {
				width = grobWidth(textGrob(labels, rot = labels_rot, gp = labels_gp))
				width = width + unit(5, "mm")
			} else {
				if(!inherits(width, "unit")) {
					stop_wrap("Since you specified `width`, the value should be `unit` object.")
				}
			}
		}
	}

	anno_size = anno_width_and_height(which, width, height, unit(5, "mm"))
	
	fun = function(index, k, n) {
		gp = subset_gp(recycle_gp(gp, n), k)
		
		grid.rect(gp = gp)
		if(length(labels)) {
			if(length(labels) != n) {
				stop_wrap("Length of `labels` should be as same as number of slices.")
			}
			label = labels[k]
			labels_gp = subset_gp(recycle_gp(labels_gp, n), k)
			grid.text(label, gp = labels_gp, rot = labels_rot)
		}
	}

	anno = AnnotationFunction(
		fun = fun,
		n = NA,
		fun_name = "anno_block",
		which = which,
		var_import = list(gp, labels, labels_gp, labels_rot),
		subset_rule = list(),
		subsetable = TRUE,
		height = anno_size$height,
		width = anno_size$width,
		show_name = show_name
	)
	return(anno) 
}

# == title
# Zoom annotation
#
# == param
# -align_to It defines how the boxes correspond to the rows or the columns in the heatmap.
#    If the value is a list of indices, each box corresponds to the rows or columns with indices
#    in one vector in the list. If the value is a categorical variable (e.g. a factor or a character vector)
#    that has the same length as the rows or columns in the heatmap, each box corresponds to the rows/columns
#    in each level in the categorical variable.
# -panel_fun A self-defined function that defines how to draw graphics in the box. The function must have
#     a ``index`` argument which is the indices for the rows/columns that the box corresponds to. It can 
#     have second argument ``nm`` which is the "name" of the selected part in the heatmap. The corresponding
#     value for ``nm`` comes from ``align_to`` if it is specified as a categorical variable or a list with names.
# -which Whether it is a column annotation or a row annotation?
# -side Side of the boxes If it is a column annotation, valid values are "top" and "bottom";
#       If it is a row annotation, valid values are "left" and "right".
# -size The size of boxes. It can be pure numeric that they are treated as relative fractions of the total
#      height/width of the heatmap. The value of ``size`` can also be absolute units.
# -gap Gaps between boxes.
# -link_gp Graphic settings for the segments.
# -link_width Width of the segments.
# -link_height Similar as ``link_width``, used for column annotation.
# -extend By default, the region for the labels has the same width (if it is a column annotation) or
#         same height (if it is a row annotation) as the heatmap. The size can be extended by this options.
#         The value can be a proportion number or  a `grid::unit` object. The length can be either one or two.
# -width Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
# -height Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
# -internal_line Internally used.
#
# == details
# `anno_zoom` creates several plotting regions (boxes) which can be corresponded to subsets of rows/columns in the
# heatmap.
#
# == value
# An annotation function which can be used in `HeatmapAnnotation`.
#
# == seealso
# https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#zoom-annotation
#
# == example
# set.seed(123)
# m = matrix(rnorm(100*10), nrow = 100)
# subgroup = sample(letters[1:3], 100, replace = TRUE, prob = c(1, 5, 10))
# rg = range(m)
# panel_fun = function(index, nm) {
# 	pushViewport(viewport(xscale = rg, yscale = c(0, 2)))
# 	grid.rect()
# 	grid.xaxis(gp = gpar(fontsize = 8))
# 	grid.boxplot(m[index, ], pos = 1, direction = "horizontal")
# 	grid.text(paste("distribution of group", nm), mean(rg), y = 1.9, 
# 		just = "top", default.units = "native", gp = gpar(fontsize = 10))
# 	popViewport()
# }
# anno = anno_zoom(align_to = subgroup, which = "row", panel_fun = panel_fun, 
# 	size = unit(2, "cm"), gap = unit(1, "cm"), width = unit(4, "cm"))
# Heatmap(m, right_annotation = rowAnnotation(foo = anno), row_split = subgroup)
#
anno_zoom = function(align_to, panel_fun = function(index, nm = NULL) { grid.rect() }, 
	which = c("column", "row"), side = ifelse(which == "column", "top", "right"),
	size = NULL, gap = unit(1, "mm"), 
	link_width = unit(5, "mm"), link_height = link_width, link_gp = gpar(),
	extend = unit(0, "mm"), width = NULL, height = NULL, internal_line = TRUE) {

	if(is.null(.ENV$current_annotation_which)) {
		which = match.arg(which)[1]
	} else {
		which = .ENV$current_annotation_which
	}

	anno_size = anno_width_and_height(which, width, height, unit(2, "cm") + link_width)

	# align_to should be
	# 1. a vector of class labels that the length should be same as the nrow of the matrix
	# 2. a list of numeric indices

	if(is.list(align_to)) {
		if(!any(sapply(align_to, is.numeric))) {
			stop_wrap(paste0("`at` should be numeric ", which, " index corresponding to the matrix."))
		}
	}

	.pos = NULL # position of the rows

	if(length(as.list(formals(panel_fun))) == 1) {
 		formals(panel_fun) = alist(index = , nm = NULL)
	}

	if(length(extend) == 1) extend = rep(extend, 2)
	if(length(extend) > 2) extend = extend[1:2]
	if(!inherits(extend, "unit")) extend = unit(extend, "npc")

	# anno_zoom is always executed in one-slice mode (which means mulitple slices
	# are treated as one big slilce)
	row_fun = function(index) {

		if(is_RStudio_current_dev()) {
			if(ht_opt$message) {
				message_wrap("It seems you are using RStudio IDE. `anno_zoom()`/`anno_link()` needs to work with the physical size of the graphics device. It only generates correct plot in the figure panel, while in the zoomed plot (by clicking the icon 'Zoom') or in the exported plot (by clicking the icon 'Export'), the connection to heatmap rows/columns might be wrong. You can directly use e.g. pdf() to save the plot into a file.\n\nUse `ht_opt$message = FALSE` to turn off this message.")
			}
		}

		n = length(index)
		if(is.atomic(align_to)) {
			if(length(setdiff(align_to, index)) == 0 && !any(duplicated(align_to))) {
				align_to = list(align_to)
			} else {
				if(length(align_to) != n) {
					stop_wrap("If `align_to` is a vector with group labels, the length should be the same as the number of rows in the heatmap.")
				}
				lnm = as.character(unique(align_to[index]))
				align_to = as.list(tapply(seq_along(align_to), align_to, function(x) x))
				align_to = align_to[lnm]
			}
		}

		## adjust index order 
		align_to = lapply(align_to, function(x) intersect(index, x))

		nrl = sapply(align_to, length)
		align_to_df = lapply(align_to, function(x) {
			ind = which(index %in% x)
			n = length(ind)
			s = NULL
			e = NULL
			s[1] = ind[1]
			if(n > 1) {
				ind2 = which(ind[2:n] - ind[1:(n-1)] > 1)
				if(length(ind2)) s = c(s, ind[ ind2 + 1 ])
				k = length(s)
				e[k] = ind[length(ind)]
				if(length(ind2)) e[1:(k-1)] = ind[1:(n-1)][ ind2 ]
			} else {
				e = ind[1]
			}
			data.frame(s = s, e = e)
		})

		# pos is from top to bottom
		if(is.null(.pos)) {
			pos = (n:1 - 0.5)/n # position of rows
		} else {
			pos = .pos
		}

		.scale = c(0, 1)
		pushViewport(viewport(xscale = c(0, 1), yscale = .scale))
		if(inherits(extend, "unit")) extend = convertHeight(extend, "native", valueOnly = TRUE)
		
		# the position of boxes initially are put evenly
		# add the gap
		n_boxes = length(align_to)
		if(length(gap) == 1) gap = rep(gap, n_boxes)
		if(is.null(size)) size = nrl
		if(length(size) == 1) size = rep(size, length(align_to))
		if(length(size) != length(align_to)) {
			stop_wrap("Length of `size` should be the same as the number of groups of indices.")
		}
		if(!inherits(size, "unit")) {
			size_is_unit = FALSE
			if(n_boxes == 1) {
				h = data.frame(bottom = .scale[1] - extend[1], top = .scale[2] + extend[2])
			} else {
				size = as.numeric(size)
				gap = convertHeight(gap, "native", valueOnly = TRUE)
				box_height = size/sum(size) * (1 + sum(extend) - sum(gap[1:(n_boxes-1)]))
				h = data.frame(
						top = cumsum(box_height) + cumsum(gap) - gap[length(gap)] - extend[1]
					)
				h$bottom = h$top - box_height
				h = 1 - h[, 2:1]
				colnames(h) = c("top", "bottom")
			}
		} else {
			size_is_unit = TRUE
			box_height = size
			box_height2 = box_height # box_height2 adds the gap
			for(i in 1:n_boxes) {
				if(i == 1 || i == n_boxes) {
					if(n_boxes > 1) {
						box_height2[i] = box_height2[i] + gap[i]*0.5
					}
				} else {
					box_height2[i] = box_height2[i] + gap[i]
				}
			}
			box_height2 = convertHeight(box_height2, "native", valueOnly = TRUE)
			# the original positions of boxes
			mean_pos = sapply(align_to_df, function(df) mean((pos[df[, 1]] + pos[df[, 2]])/2))
			h1 = mean_pos - box_height2*0.5
			h2 = mean_pos + box_height2*0.5
			h = smartAlign2(rev(h1), rev(h2), c(.scale[1] - extend[1], .scale[2] + extend[2]))
			colnames(h) = c("bottom", "top")
			h = h[nrow(h):1, , drop = FALSE]

			# recalcualte h to remove gaps
			gap_height = convertHeight(gap, "native", valueOnly = TRUE)
			if(n_boxes > 1) {
				for(i in 1:n_boxes) {
					if(i == 1) {
						h[i, "bottom"] = h[i, "bottom"] + gap_height[i]/2
					} else if(i == n_boxes) {
						h[i, "top"] = h[i, "top"] - gap_height[i]/2
					} else {
						h[i, "bottom"] = h[i, "bottom"] + gap_height[i]/2
						h[i, "top"] = h[i, "top"] - gap_height[i]/2
					}
				}
			}
		}
		popViewport()

		# draw boxes
		if(side == "right") {
			pushViewport(viewport(x = link_width, just = "left", width = anno_size$width - link_width))
		} else {
			pushViewport(viewport(x = 0, just = "left", width = anno_size$width - link_width))
		}
		for(i in 1:n_boxes) {
			current_vp_name = current.viewport()$name
			pushViewport(viewport(y = (h[i, "top"] + h[i, "bottom"])/2, height = h[i, "top"] - h[i, "bottom"], 
				default.units = "native"))
			if(is.function(panel_fun)) panel_fun(align_to[[i]], names(align_to)[i])
			popViewport()

			if(current.viewport()$name != current_vp_name) {
				stop_wrap("If you push viewports `panel_fun`, you need to pop all them out.")
			}
		}
		popViewport()
		# draw the links
		if(is.null(link_gp$fill)) link_gp$fill = NA
		link_gp = recycle_gp(link_gp, n_boxes)
		if(side == "right") {
			pushViewport(viewport(x = unit(0, "npc"), just = "left", width = link_width))
		} else {
			pushViewport(viewport(x = unit(1, "npc"), just = "right", width = link_width))
		}
		for(i in 1:n_boxes) {
			df = align_to_df[[i]]
			for(j in 1:nrow(df)) {
				# draw each polygon
				if(!internal_line) {
					link_gp3 = link_gp2 = link_gp
					link_gp2$col = link_gp$fill
					link_gp2$lty = NULL
					link_gp3$fill = NA
					if(side == "right") {
						grid.polygon(unit.c(unit(c(0, 0), "npc"), rep(link_width, 2)),
							c(pos[df[j, 2]] - 0.5/n, pos[df[j, 1]] + 0.5/n, h[i, "top"], h[i, "bottom"]),
							default.units = "native", gp = subset_gp(link_gp2, i))

						grid.lines(unit.c(link_width, unit(c(0, 0), "npc"), link_width),
							c(h[i, "bottom"], pos[df[j, 2]] - 0.5/n, pos[df[j, 1]] + 0.5/n, h[i, "top"]),
							default.units = "native", gp = subset_gp(link_gp3, i))
					} else {
						grid.polygon(unit.c(rep(link_width, 2), unit(c(0, 0), "npc")),
							c(pos[df[j, 2]] - 0.5/n, pos[df[j, 1]] + 0.5/n, h[i, "top"], h[i, "bottom"]),
							default.units = "native", gp = subset_gp(link_gp2, i))

						grid.lines(unit.c(unit(0, "npc"), rep(link_width, 2), unit(0, "npc")),
							c(h[i, "bottom"], pos[df[j, 2]] - 0.5/n, pos[df[j, 1]] + 0.5/n, h[i, "top"]),
							default.units = "native", gp = subset_gp(link_gp3, i))
					}

				} else {
					if(side == "right") {
						grid.polygon(unit.c(unit(c(0, 0), "npc"), rep(link_width, 2)),
							c(pos[df[j, 2]] - 0.5/n, pos[df[j, 1]] + 0.5/n, h[i, "top"], h[i, "bottom"]),
							default.units = "native", gp = subset_gp(link_gp, i))
					} else {
						grid.polygon(unit.c(rep(link_width, 2), unit(c(0, 0), "npc")),
							c(pos[df[j, 2]] - 0.5/n, pos[df[j, 1]] + 0.5/n, h[i, "top"], h[i, "bottom"]),
							default.units = "native", gp = subset_gp(link_gp, i))
					}
				}
			}
		}
		popViewport()
	}

	column_fun = function(index) {

		if(is_RStudio_current_dev()) {
			if(ht_opt$message) {
				message_wrap("It seems you are using RStudio IDE. `anno_zoom()`/`anno_link()` needs to work with the physical size of the graphics device. It only generates correct plot in the figure panel, while in the zoomed plot (by clicking the icon 'Zoom') or in the exported plot (by clicking the icon 'Export'), the connection to heatmap rows/columns might be wrong. You can directly use e.g. pdf() to save the plot into a file.\n\nUse `ht_opt$message = FALSE` to turn off this message.")
			}
		}

		n = length(index)
		
		if(is.atomic(align_to)) {
			if(length(setdiff(align_to, index)) == 0 && !any(duplicated(align_to))) {
				align_to = list(align_to)
			} else {
				if(length(align_to) != n) {
					stop_wrap("If `align_to` is a vector with group labels, the length should be the same as the number of columns in the heatmap.")
				}
				lnm = as.character(unique(align_to[index]))
				align_to = as.list(tapply(seq_along(align_to), align_to, function(x) x))
				align_to = align_to[lnm]
			}
		}

		align_to = lapply(align_to, function(x) intersect(index, x))

		nrl = sapply(align_to, length)
		align_to_df = lapply(align_to, function(x) {
			ind = which(index %in% x)
			n = length(ind)
			s = NULL
			e = NULL
			s[1] = ind[1]
			if(n > 1) {
				ind2 = which(ind[2:n] - ind[1:(n-1)] > 1)
				if(length(ind2)) s = c(s, ind[ ind2 + 1 ])
				k = length(s)
				e[k] = ind[length(ind)]
				if(length(ind2)) e[1:(k-1)] = ind[1:(n-1)][ ind2 ]
			} else {
				e = ind[1]
			}
			data.frame(s = s, e = e)
		})

		if(is.null(.pos)) {
			pos = (1:n - 0.5)/n 
		} else {
			pos = .pos
		}

		.scale = c(0, 1)
		pushViewport(viewport(yscale = c(0, 1), xscale = .scale))
		if(inherits(extend, "unit")) extend = convertWidth(extend, "native", valueOnly = TRUE)
		
		# the position of boxes initially are put evenly
		# add the gap
		n_boxes = length(align_to)
		if(length(gap) == 1) gap = rep(gap, n_boxes)
		if(is.null(size)) size = nrl
		if(length(size) == 1) size = rep(size, length(align_to))
		if(length(size) != length(align_to)) {
			stop_wrap("Length of `size` should be the same as the number of groups of indices.")
		}
		if(!inherits(size, "unit")) {
			size_is_unit = FALSE
			if(n_boxes == 1) {
				h = data.frame(left = .scale[1] - extend[1], right = .scale[2] + extend[2])
			} else {
				size = as.numeric(size)
				gap = convertWidth(gap, "native", valueOnly = TRUE)
				box_width = size/sum(size) * (1 + sum(extend) - sum(gap[1:(n_boxes-1)]))
				h = data.frame(
						right = cumsum(box_width) + cumsum(gap) - gap[length(gap)] - extend[1]
					)
				h$left = h$right - box_width
			}
		} else {
			size_is_unit = TRUE
			box_width = size
			box_width2 = box_width
			for(i in 1:n_boxes) {
				if(i == 1 || i == n_boxes) {
					if(n_boxes > 1) {
						box_width2[i] = box_width2[i] + gap[i]*0.5
					}
				} else {
					box_width2[i] = box_width2[i] + gap[i]
				}
			}
			box_width2 = convertWidth(box_width2, "native", valueOnly = TRUE)
			# the original positions of boxes
			mean_pos = sapply(align_to_df, function(df) mean((pos[df[, 1]] + pos[df[, 2]])/2))
			h1 = mean_pos - box_width2*0.5
			h2 = mean_pos + box_width2*0.5
			h = smartAlign2(h1, h2, c(.scale[1] - extend[1], .scale[2] + extend[2]))
			colnames(h) = c("left", "right")

			# recalcualte h to remove gaps
			gap_width = convertWidth(gap, "native", valueOnly = TRUE)
			if(n_boxes > 1) {
				for(i in 1:n_boxes) {
					if(i == 1) {
						h[i, "left"] = h[i, "left"] + gap_width[i]/2
					} else if(i == n_boxes) {
						h[i, "right"] = h[i, "right"] - gap_width[i]/2
					} else {
						h[i, "left"] = h[i, "left"] + gap_width[i]/2
						h[i, "right"] = h[i, "right"] - gap_width[i]/2
					}
				}
			}
		}
		popViewport()

		# draw boxes
		if(side == "top") {
			pushViewport(viewport(y = link_height, just = "bottom", height = anno_size$height - link_height))
		} else {
			pushViewport(viewport(y = 0, just = "bottom", height = anno_size$height - link_height))
		}
		for(i in 1:n_boxes) {
			current_vp_name = current.viewport()$name
			pushViewport(viewport(x = (h[i, "right"] + h[i, "left"])/2, width = h[i, "right"] - h[i, "left"], 
				default.units = "native"))
			if(is.function(panel_fun)) panel_fun(align_to[[i]], names(align_to)[i])
			popViewport()

			if(current.viewport()$name != current_vp_name) {
				stop_wrap("If you push viewports `panel_fun`, you need to pop all them out.")
			}
		}
		popViewport()
		# draw the links
		if(is.null(link_gp$fill)) link_gp$fill = NA
		link_gp = recycle_gp(link_gp, n_boxes)
		if(side == "top") {
			pushViewport(viewport(y = unit(0, "npc"), just = "bottom", height = link_height))
		} else {
			pushViewport(viewport(y = unit(1, "npc"), just = "top", height = link_height))
		}
		for(i in 1:n_boxes) {
			df = align_to_df[[i]]
			for(j in 1:nrow(df)) {
				# draw each polygon
				if(!internal_line) {
					link_gp3 = link_gp2 = link_gp
					link_gp2$col = link_gp$fill
					link_gp2$lty = NULL
					link_gp3$fill = NA

					if(side == "top") {
						grid.polygon(
							c(pos[df[j, 2]] + 0.5/n, pos[df[j, 1]] - 0.5/n, h[i, "left"], h[i, "right"]),
							unit.c(unit(c(0, 0), "npc"), rep(link_width, 2)),
							default.units = "native", gp = subset_gp(link_gp2, i))

						grid.lines(
							c(h[i, "right"], pos[df[j, 2]] + 0.5/n, pos[df[j, 1]] - 0.5/n, h[i, "left"]),
							unit.c(link_width,unit(c(0, 0), "npc"), link_width),
							default.units = "native", gp = subset_gp(link_gp3, i))
					} else {
						grid.polygon(
							c(pos[df[j, 2]] + 0.5/n, pos[df[j, 1]] - 0.5/n, h[i, "left"], h[i, "right"]),
							unit.c(rep(link_width, 2), unit(c(0, 0), "npc")),
							default.units = "native", gp = subset_gp(link_gp2, i))

						grid.lines(
							c(h[i, "right"], pos[df[j, 2]] + 0.5/n, pos[df[j, 1]] - 0.5/n, h[i, "left"]),
							unit.c(unit(0, "npc"), rep(link_width, 2), unit(0, "npc")),
							default.units = "native", gp = subset_gp(link_gp3, i))
					}
				} else {
					if(side == "top") {
						grid.polygon(
							c(pos[df[j, 2]] + 0.5/n, pos[df[j, 1]] - 0.5/n, h[i, "left"], h[i, "right"]),
							unit.c(unit(c(0, 0), "npc"), rep(link_width, 2)),
							default.units = "native", gp = subset_gp(link_gp, i))
					} else {
						grid.polygon(
							c(pos[df[j, 2]] + 0.5/n, pos[df[j, 1]] - 0.5/n, h[i, "left"], h[i, "right"]),
							unit.c(rep(link_width, 2), unit(c(0, 0), "npc")),
							default.units = "native", gp = subset_gp(link_gp, i))
					}
				}
			}
		}
		popViewport()
		
	}

	if(which == "row") {
		fun = row_fun
	} else if(which == "column") {
		fun = column_fun
	}
	
	anno = AnnotationFunction(
		fun = fun,
		fun_name = "anno_zoom",
		which = which,
		height = anno_size$height,
		width = anno_size$width,
		n = -1,
		var_import = list(align_to, .pos, gap, size, panel_fun, side, anno_size, extend,
			link_width, link_height, link_gp, internal_line),
		show_name = FALSE
	)

	anno@subset_rule$align_to = function(x, i) {
		if(is.atomic(x)) {
			x[i]
		} else {
			x = lapply(x, function(x) intersect(x, i))
			x = x[sapply(x, length) > 0]
		}
	}

	anno@subsetable = TRUE
	return(anno)
}

Try the ComplexHeatmap package in your browser

Any scripts or data that you put into this service are public.

ComplexHeatmap documentation built on Nov. 14, 2020, 2:01 a.m.