Nothing
#' @title Plot quality control histograms
#'
#' @description Plots quality control histograms of pEC50 values of reference dataset and
#' indicates the pEC50 values of the 2D-TPP experiment
#'
#' @return A pdf with various quality control plots for a specified 2D-TPP data set
#'
#' @param configFile data frame or system path to table that specifies important details
#' of the 2D-TPP experiment
#' @param resultTable data.frame containing the results of a CCR analysis of 2D-TPP data
#' @param resultPath character string containing a valid system path to which the the qc
#' plots will be written
#' @param trRef character string with a link to a TPP-TR reference object RData file
#' @param fcStr character string indicating how columns that will contain the actual
#' fold change values are called.
#' @param idVar character string indicating name of the columns containing the unique protein
#' identifiers
#' @param qualColName character string indicating which column contain protein
#' identification quality measures
#'
#' @export
tpp2dPlotQChist <- function(configFile=NULL, resultTable=NULL, resultPath=NULL, trRef=NULL,
fcStr="rel_fc_", idVar="gene_name", qualColName="qupm"){
# Problem: this function does not return plots, but stores them as a 'side effect'.
# In contrast, tpp2dPlotQCpEC50 returns the plots.
# -> Choose one version for consistency.
## Initialize variables to prevent "no visible binding for global
## variable" NOTE by R CMD check:
concentration = experiment = intercept = slope = stats = R2 = temperature =
stddev = dmso1_vs_dmso2 = marked = experiment = Var1 = Freq = Var2 =
median_meltPoint = rev_cumsum <- NULL
message("Creating QC histograms...")
# define suffix of normlized data columns
fcStrNorm <- paste("norm", fcStr, sep="_")
# eval configFile
configTable <- importCheckConfigTable(infoTable = configFile, type = "2D")
# pre-define global variables
key <- NULL
fc <- NULL
log2fc <- NULL
type <- NULL
variable <- NULL
# get Experiment IDs from configTable
expIDs <- unique(configTable$Experiment)
# create directory for histogram qc plots
dirPath <- file.path(resultPath, "qc_Histograms")
if (!file.exists(dirPath)){ # new (remove the 'path already exists' warning)
dir.create(dirPath, recursive = TRUE)
}
# prepare filename and open pdf for writing
fileName <- file.path(dirPath, "qc_histograms.pdf")
pdf(fileName, onefile=TRUE)
dmsoRatio <- "dmso1_vs_dmso2"
fc_cols_orig <- grep(paste0("^", fcStrNorm,".*unmodified"),colnames(resultTable),value=TRUE)
fc_cols <- grep(paste0("^", fcStr),colnames(resultTable),value=TRUE)
# create tidy dataframe
tmp.df <- resultTable %>%
select(!!idVar, temperature, experiment, !!!fc_cols_orig, !!!fc_cols) %>%
gather("key", "fc", !!!syms(c(fc_cols_orig, fc_cols))) %>%
mutate(concentration=gsub("(.+)_([0-9,\\.]+)(.*)", "\\2", key),
type=sub(paste(fcStr, ".*", sep=""), "original",
sub(".*unmodified", "normalized", key)),
log2fc=log2(fc)) %>%
select(!!idVar, temperature, experiment, concentration, type, fc, log2fc) %>%
filter(concentration!="0")
# loop over all ms experiments
lapply(expIDs, function(ms_exp){
# histogram
t.plot <- ggplot(tmp.df[which(tmp.df$experiment==ms_exp),], aes(x=log2fc)) +
geom_histogram(binwidth=0.1, na.rm = TRUE) +
xlim(-2, 2) +
geom_vline(xintercept=0, color="red", linetype=2) +
facet_grid(temperature+type~concentration) +
xlab("log2 FC") + ylab("No. of proteins") +
ggtitle("original & normalized log2 FC (to resp. 0uM)\nper compound concentration
and temperature") +
theme_bw() +
theme(axis.title=element_text(size=20, face="bold"))
grid.arrange(t.plot)
# density plot
t.plot <- ggplot(tmp.df %>% filter(experiment==ms_exp), aes(x=log2fc)) +
geom_density(adjust=0.1, na.rm = TRUE) +
xlim(-2, 2) +
geom_vline(xintercept=0, color="red", linetype=2) +
facet_grid(temperature+type~concentration) +
xlab("log2 FC") + ylab("Density") +
ggtitle("original & normalized log2 FC (to resp. 0uM)\nper compound concentration
and temperature") +
theme_bw() +
theme(axis.title=element_text(size=20, face="bold"))
grid.arrange(t.plot)
})
## test protein FC distributions for normality and create QQ-plot
tmp.df <- tmp.df[which(tmp.df$type=="normalized"),]
qq.data <- ddply(tmp.df, c("temperature","concentration"), function(df) {
# calculate quantiles for FC
fcq <- quantile(df$log2fc, probs=(1:99)/100, na.rm=TRUE)
ndq <- qnorm(p=(1:99)/100)
slope <- (fcq[75]-fcq[25])/(ndq[75]-ndq[25])
intercept <- fcq[25] - slope*ndq[25]
# calculate R2
incl <- 1:99 # c(1:25, 75:99)
ss.res <- sum((fcq[incl] - (ndq[incl]*slope + intercept))^2)
ss.tot <- sum((fcq[incl] - mean(fcq))^2)
r2 <- 1 - (ss.res/ss.tot)
# save data in data.frame
data.frame(slope=slope,
intercept=intercept,
R2=round(r2,2),
stats=paste("R2 =", round(r2,2)))
})
invisible(lapply(seq(1, length(levels(as.factor(tmp.df$temperature))), by=4), function(i){
l.temps <-
levels(as.factor(tmp.df$temperature))[i:min(i+3,length(levels(as.factor(tmp.df$temperature))))]
l.qq.tmp <- qq.data[which(qq.data$temperature%in%l.temps),]
# create QQ-plot for FC
l.plot <- ggplot(tmp.df[which(tmp.df$temperature%in%l.temps),], aes(sample=log2fc)) +
facet_grid(temperature~concentration) +
geom_point(stat="qq", distribution=qnorm, na.rm = TRUE) +
xlab("Theoret. quantiles from Normal distribution") + ylab("Quantiles of FC") +
geom_abline(data=l.qq.tmp, aes(intercept=intercept, slope=slope), color="red", linetype=2) +
xlim(-6,6) + ylim(-6,6) +
ggtitle("QQ-plot: Normal distribution vs. protein fold changes") +
theme_bw() +
geom_text(data=l.qq.tmp, aes(x=-5, y=5, label=stats),
colour="black", inherit.aes=FALSE, parse=FALSE, size=2, hjust=0)
# save plot
grid.arrange(l.plot)
}))
## plot R2 of QQ-plot line fit over concetration
l.plot <- ggplot(qq.data, aes(x=concentration, y=R2, color=as.factor(temperature),
group=as.factor(temperature))) +
facet_wrap( ~ temperature, ncol=2) + geom_point() + geom_line() +
scale_color_discrete("Temperature") +
xlab("Compound concentration") + ylab("R2 of QQ-plot line fit") +
geom_hline(yintercept=0.8, colour="red", linetype=2) +
#theme(axis.title=element_text(face="bold"),
# axis.text.x=element_text(size=10, face="bold", angle=90),
# axis.text.y=element_text(size=10, face="bold")) +
theme_bw()+
ggtitle("R2 of QQ-plot line fit")
# save plot
grid.arrange(l.plot)
## plot std. dev. over concentration
sd.data <- ddply(tmp.df, c("temperature","concentration"), function(df) {
# calculate std. dev.
stddev <- sd(df$log2fc, na.rm=TRUE)
# calculate robust sd estimation
quantiles <- quantile(df$log2fc, c(0.1587, 0.5, 0.8413), na.rm=TRUE)
mu <- quantiles[2]
sigma_left <- mu - quantiles[1]
sigma_right <- quantiles[3] - mu
# save data in data.frame
data.frame(stddev=round(stddev,2),
sl=round(sigma_left,2),
sr=round(sigma_right,2))
})
# create plot
l.plot <- ggplot(sd.data, aes(x=concentration, y=stddev, color=as.factor(temperature),
group=as.factor(temperature))) +
facet_wrap( ~ temperature, ncol=2) + geom_point() + geom_line() +
scale_color_discrete("Temperature") +
xlab("Compound concentration") + ylab("Std. dev. of log2 FC distr.") +
theme_bw() +
ggtitle("Std. dev. of log2 FC distribution")
# save plot
grid.arrange(l.plot)
if (length(grep(dmsoRatio, colnames(resultTable)))>0){
tmp.df <- resultTable %>%
select(!!idVar, experiment, temperature, !!qualColName, !!dmsoRatio) %>%
filter(!!sym(qualColName)>1) %>%
mutate(marked=abs(log2(as.numeric(dmso1_vs_dmso2)))>=1,
annotation=sub("TRUE", "abs(log2(DMSO1/DMSO2))>=1", marked)) %>%
mutate(annotation=sub("FALSE", "abs(log2(DMSO1/DMSO2))<1", annotation)) %>%
ddply(.variables=c(idVar, "experiment", qualColName, dmsoRatio, "marked", "annotation"),
function(df) {
data.frame(temperature=paste(df$temperature, collapse=", "))
}) %>%
mutate(label=paste(temperature, "\n(", experiment, ")", sep=""))
tbl <- as.data.frame(table(tmp.df$label, tmp.df$annotation))
t.plot <- ggplot(tbl) +
geom_bar(stat="identity", aes(Var1, Freq, fill=Var2), position="dodge") +
geom_text(aes(Var1, Freq, label=Freq), position="dodge", vjust=-0.3) +
scale_fill_manual(values=c("grey","red")) +
scale_colour_manual(values=c("grey","red")) +
xlab("MS experiment") + ylab("No. of proteins") +
ggtitle("No. of proteins with qupm>1") +
theme_bw() +
theme(axis.text.x=element_text(size=12, face="bold", angle=90),
axis.title=element_text(size=18, face="bold"))
grid.arrange(t.plot)
# check if TPP-TR reference is given
if (!is.null(trRef)) {
## DSMO shift plots with reference melting point
dirName <- rev(strsplit(trRef, "/")[[1]])[2]
summaryFile <- file.path(sub(basename(trRef), "", trRef), "Summary.txt")
sumF <- read.table(summaryFile, header=TRUE, sep="\t")
tmp.df <- merge(tmp.df, sumF[,c("Protein_ID","median_meltPoint")],
by.x=c("representative"), by.y=c("Protein_ID"))
# through out NAs
tmp.df <- tmp.df[which(complete.cases(tmp.df)),]
# create plot
t.plot <- ggplot(tmp.df[tmp.df$marked,], aes(x=median_meltPoint)) +
geom_histogram(binwidth=0.5) +
facet_wrap(~label) +
xlab("Melting temperature") +
ylab("No. of proteins") +
ggtitle("No. of proteins with qupm>1\n and abs(log2(DMSO1/DMSO2))>=1") +
theme_bw() +
theme(axis.title=element_text(size=20, face="bold"),
strip.text.x=element_text(size=14, face="bold"))
# save plot to PDF
grid.arrange(t.plot)
# create plot
t.plot <- ggplot(tmp.df[tmp.df$marked,], aes(x=as.factor(experiment), y=median_meltPoint)) +
geom_boxplot(aes(fill=experiment)) +
geom_jitter() +
#facet_wrap(~label) +
ylab("Melting temperature") +
xlab("Experiment IDs") +
ggtitle("Distribution of proteins with qupm>1\n and abs(log2(DMSO1/DMSO2))>=1") +
theme_bw() +
theme(axis.title=element_text(size=20, face="bold"),
strip.text.x=element_text(size=14, face="bold"),
legend.position=c("none"))
# save plot to PDF
grid.arrange(t.plot)
}
}
# no. of temperatures per protein plot
tmp.df <- resultTable %>%
select(!!idVar, temperature, !!qualColName) %>%
filter(!!sym(qualColName)>1) %>%
group_by(!!idVar) %>%
summarise(count=length(temperature))
tbl <- as.data.frame(table(tmp.df$count))
# create plot
t.plot <- ggplot(tbl, aes(x=Var1, y=Freq)) + geom_bar(stat="identity") +
geom_text(aes(label=Freq), vjust=-0.3, size=6) +
xlab("No. of temperatures protein was found") + ylab("No. of proteins") +
ggtitle("No. of proteins with qupm>1") +
theme_bw() +
theme(axis.title=element_text(size=20, face="bold"), strip.text.x=element_text(size=12))
# save plot to PDF
grid.arrange(t.plot)
# cumulated no. of temperatures per protein plot
tbl$rev_cumsum <- rev(cumsum(rev(tbl$Freq)))
t.plot <- ggplot(tbl, aes(x=Var1, y=rev_cumsum)) + geom_bar(stat="identity") +
geom_text(aes(label=rev_cumsum), vjust=-0.3, size=6) +
xlab("Min. no. of temperatures protein was found") + ylab("No. of proteins") +
ggtitle("No. of proteins with qupm>1") +
theme_bw() +
theme(axis.title=element_text(size=20, face="bold"), strip.text.x=element_text(size=12))
grid.arrange(t.plot)
# close pdf
dev.off()
message("Done.")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.