Description Usage Arguments Value Author(s) References See Also Examples
function performs TFBS prediction using the package rtfbs
1 2 |
x |
an object of the class "cobindr", which will hold all necessary information about the sequences and the hits. |
append |
logical flag, if append=TRUE the binding sites will be appended to already existing results |
background_scan |
logical flag, if background_scan=TRUE the background sequences will be searched for transcription factor binding sites |
n.cpu |
number of CPUs to be used for parallelization. Default value is 'NA' in which case the number of available CPUs is checked and than used. |
x |
an object of the class "cobindr" including the predicted transcription factor binding sites |
Yue-Hien Lee <>
uses the package "rtfbs" (http://cran.r-project.org/web/packages/rtfbs/index.html)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | ############################################################
# use simulated sequences
library(Biostrings)
n <- 400 # number of input sequences
l <- 500 # length of sequences
n.hits <- 250 # number of 'true' binding sites
bases <- c("A","C","G","T") # alphabet
# generate random input sequences with two groups with differing GC content
seqs <- sapply(1:(3*n/4), function(x) paste(sample(bases, l, replace=TRUE,
prob=c(.3,.22,.2,.28)), collapse=""))
seqs <- append(seqs, sapply(1:(n/4), function(x) paste(sample(bases, l,
replace=TRUE, prob=c(.25,.25,.25,.25)), collapse="")))
path <- system.file('extdata/pfms/myod.tfpfm',package='cobindR')
motif <- read.transfac.pfm(path)[[1]] # get PFM of binding site
# add binding sites with distance specificity
for(position in c(110, 150)) {
hits <- apply(apply(motif, 2, function(x) sample(x=bases, size=n.hits,
prob=x, replace=TRUE)), 1, paste, collapse='')
pos.hits <- round(rnorm(n.hits, mean=position, sd=8))
names(pos.hits) <- sample(1:n, n.hits)
for(i in 1:n.hits) substr(seqs[as.integer(names(pos.hits)[i])],
start=pos.hits[i], stop=pos.hits[i]+ncol(motif)) <- hits[i]
}
#save sample sequences in fasta file
tmp.file <- tempfile(pattern = "cobindr_sample_seq", tmpdir = tempdir(), fileext = ".fasta")
writeXStringSet(DNAStringSet(seqs), tmp.file)
#run cobindr
cfg <- cobindRConfiguration()
sequence_type(cfg) <- 'fasta'
sequence_source(cfg) <- tmp.file
sequence_origin(cfg) <- 'artificial sequences'
pfm_path(cfg) <- system.file('extdata/pfms',package='cobindR')
pairs(cfg) <- 'V$MYOD_01 V$MYOD_01'
fdrThreshold(cfg) <- 0
runObj <- cobindr(cfg, name='cobindr test using sampled sequences')
# perform tfbs prediction using rtfbs
runObj.bs <- rtfbs(runObj)
# show results
plot.positionprofile(runObj.bs)
#clean up
unlink(tmp.file)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.