Description Usage Arguments Value Author(s) References See Also Examples
function performs TFBS prediction denovo or based on transfac / jaspar matrices pwms using rGADEM. If append=T, predicted hits are appended to the hits in the input object.
1 2 | ## S4 method for signature 'cobindr'
search.gadem(x, deNovo = FALSE, append = F, background_scan = FALSE)
|
x |
an object of the class "cobindr", which will hold all necessary information about the sequences and the hits. |
deNovo |
logical flag, if deNOVO=TRUE a denovo search is startet. Otherwise the given PFMs are used as seed. |
append |
logical flag, if append=TRUE the binding sites will be appended to already existing results |
background_scan |
logical flag, if background_scan=TRUE the function will search for binding sites in the set of background sequences |
x |
an object of the class "cobindr" including the predicted transcription factor binding sites |
Robert Lehmann <r.lehmann@biologie.hu-berlin.de>
uses package "rGADEM" (http://www.bioconductor.org/packages/release/bioc/html/rGADEM.html)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | ############################################################
# use simulated sequences
library(Biostrings)
n <- 600 # number of input sequences
l <- 150 # length of sequences
n.hits <- 600 # number of 'true' binding sites
bases <- c("A","C","G","T") # alphabet
# generate random input sequences with two groups with differing GC content
seqs <- sapply(1:(3*n/4), function(x) paste(sample(bases, l, replace=TRUE,
prob=c(.3,.22,.2,.28)), collapse=""))
seqs <- append(seqs, sapply(1:(n/4), function(x) paste(sample(bases, l,
replace=TRUE, prob=c(.25,.25,.25,.25)), collapse="")))
path <- system.file('extdata/pfms/myod.tfpfm',package='cobindR')
motif <- read.transfac.pfm(path)[[1]] # get PFM of binding site
# add binding sites with distance specificity
for(position in c(70, 90)) {
hits <- apply(apply(motif, 2, function(x) sample(x=bases, size=n.hits,
prob=x, replace=TRUE)), 1, paste, collapse='')
pos.hits <- round(rnorm(n.hits, mean=position, sd=8))
names(pos.hits) <- sample(1:n, n.hits)
for(i in 1:n.hits) substr(seqs[as.integer(names(pos.hits)[i])], start=pos.hits[i],
stop=pos.hits[i]+ncol(motif)) <- hits[i]
}
#save sample sequences in fasta file
tmp.file <- tempfile(pattern = "cobindr_sample_seq", tmpdir = tempdir(), fileext = ".fasta")
writeXStringSet(DNAStringSet(seqs), tmp.file)
#run cobindr
cfg <- cobindRConfiguration()
sequence_type(cfg) <- 'fasta'
sequence_source(cfg) <- tmp.file
sequence_origin(cfg) <- 'artificial sequences'
pfm_path(cfg) <- system.file('extdata/pfms',package='cobindR')
pairs(cfg) <- 'V$MYOD_01 V$MYOD_01'
runObj <-cobindr(cfg, name='cobindr test using sampled sequences')
# perform tfbs prediction using rGADEM - commented out due to long time required
# runObj.bs <- search.gadem(runObj)
# show results
# plot.positions(runObj.bs)
#clean up
unlink(tmp.file)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.