| AFROC | AF*ROC* curve (alternative free-response *ROC* curve) | 
| AFROC_curve | FROC curve as an embedding map | 
| argMax | Arg Max: Extract a subscript corresponding component is a max | 
| argMin | Arg Min: Extract a subscript corresponding component is a... | 
| array_easy_example | Example array | 
| array_of_hit_and_false_alarms_from_vector | Array of hits and false alarms; 2019 Jun 18 | 
| Author_vs_classic_for_AUC | validation of AUC calculation | 
| BayesianFROC | Theory of FROC Analysis via Bayesian Approaches | 
| caseID_m_q_c_vector_from_NI_M_Q_C | Creats vectors: 'm,q,c' from integers: 'M,Q,C' | 
| check_hit_is_less_than_NL | Chech total hit is less than NL for each reader and each... | 
| check_rhat | Diagnosis of MCMC sampling | 
| chi_square_at_replicated_data_and_MCMC_samples_MRMC | chi square at replicated data drawn (only one time) from... | 
| chi_square_goodness_of_fit | _*Chi square goodness of fit statistics*_ at each MCMC sample... | 
| chi_square_goodness_of_fit_from_input_all_param | Calculates the Goodness of Fit (Chi Square) | 
| chi_square_goodness_of_fit_from_input_all_param_MRMC | Chi square in the case of MRMC at a given dataset and a given... | 
| Chi_square_goodness_of_fit_in_case_of_MRMC_Posterior_Mean | Chi square statistic (goodness of fit) in the case of MRMC at... | 
| clearWorkspace | Clear Work Space | 
| Close_all_graphic_devices | Close the Graphic Device | 
| color_message | message with colored item | 
| compare | model comparison | 
| comparison | model comparison | 
| compile_all_models_in_pkg_BayesianFROC | Compile all stanfiles in pkg BayesianFROC | 
| ConfirmConvergence | Check R hat criterion | 
| Confirm_hit_rates_are_correctly_made_in_case_of_MRMC | Check whether each hit-rate is defined correctly | 
| CoronaVirus_Disease_2019 | Who should be inspected? | 
| CoronaVirus_Disease_2019_prevalence | Who should be inspected? | 
| create_dataList_MRMC | Creates a _Single_ Dataset in Case of MRMC | 
| create_dataset | Creates a dataset | 
| Credible_Interval_for_curve | Draw FROC curves which means credible interval. | 
| d | Data: A Single Reader and A Single Modality | 
| dark_theme | Dark Theme | 
| data_2modaities_2readers_3confidence | data: 2 readers, 2 modalities and 3 confideneces | 
| data.bad.fit | Data: Single reader and Single modality | 
| data_generate_NaN_in_fit_with_iteration1111_seed1234 | *NaN in samplings* A Single Reader and A Single Modality | 
| data.hier.ficitious | Multiple reader and Multiple modality data | 
| dataList.Chakra.1 | Data: A Single Reader and A Single Modality | 
| dataList.Chakra.1.with.explantation | Data: A Single Reader and A Single Modality | 
| dataList.Chakra.2 | Data: A Single Reader and A Single Modality | 
| dataList.Chakra.3 | Data: A Single Reader and A Single Modality | 
| dataList.Chakra.4 | Data: A Single Reader and A Single Modality | 
| dataList.Chakra.Web | An FROC Data of Multiple-Reader and Multiple-Modality | 
| dataList.Chakra.Web.orderd | An FROC Data of Multiple-Reader and Multiple-Modality | 
| dataList.divergent.transition.in.case.of.srsc | An FROC Dataset with *_Divergent Transitions_* in case of A... | 
| dataList.High | Data: Single reader and Single modality | 
| dataList.high.ability | Data: A Single Reader and A Single Modality | 
| dataList.Low | Data: Single reader and Single modality | 
| dataList.low.ability | Data: A Single Reader and A Single Modality | 
| dataList.one.modality | dataset of Multiple reader and one modality | 
| data_low_p_value | *low p-value = 0.012* Data: Single reader and Single modality | 
| data_much_low_p_value | *low p-value = 0.002* A Single Reader and A Single Modality | 
| data.MultiReaderMultiModality | Multiple reader and Multiple modality data | 
| data.nonconverge.srsc | *Non-Convergent* Data: Single reader and Single modality | 
| data_of_36_readers_and_a_single_modality | 36 readers and a sinle modality data | 
| dataset_creator_by_specifying_only_M_Q | Creates dataset | 
| dataset_creator_for_many_Readers | create data for MRMC | 
| dataset_creator_new_version | Create a Dataset (version 2) Interactively | 
| data.SingleReaderSingleModality | Data: A Single Reader and A Single Modality | 
| dcasewise | An casewised FROC Data of Multiple-Reader and... | 
| dd | Multiple Reader and Multiple Modality Data | 
| ddd | Multiple reader and Multiple modality data | 
| dddd | One reader and Multiple modality data | 
| ddddd | Data of MRMC; Model * _ does _* converge. | 
| dddddd | Multiple reader and single modality data | 
| ddddddd | Multiple reader and 2 modalities data such that all... | 
| dd.orderd | Multiple Reader and Multiple Modality Data | 
| demo_Bayesian_FROC | demonstration | 
| demo_Bayesian_FROC_without_pause | demonstration without pausing | 
| Draw_an_area_of_AUC_for_srsc | Draw a Region of the area under the AFROC curve | 
| Draw_a_prior_sample | Draw One Sample from Prior | 
| Draw_a_simulated_data_set | Draw a simulated dataset from model distributions with... | 
| Draw_a_simulated_data_set_and_Draw_posterior_samples | Draw a dataset and MCMC samples | 
| Draw_AUC | Draw the Region of AUC of AFROC | 
| draw.CFP.CTP.from.dataList | Plot the pairs of CFPs and CTPs | 
| DrawCurves | Draw FROC curves | 
| DrawCurves_MRMC | Draw the FROC curves for all modalities and readers | 
| DrawCurves_MRMC_pairwise | Draw the FROC curves with Colour | 
| DrawCurves_MRMC_pairwise_BlackWhite | Draw the FROC curves without colour | 
| DrawCurves_MRMC_pairwise_col | Draw the FROC curves with Colour | 
| DrawCurves_srsc | Draw the FROC curves | 
| draw_latent_noise_distribution | Visualization of the Latent Gaussian for false rates | 
| draw_latent_signal_distribution | Visualization of Latent Gaussians ( Signal Distribution) | 
| draw_ROC_Curve | Title | 
| draw_ROC_Curve_from_fitted_model | Title | 
| dz | Threshold: parameter of an MRMC model | 
| Empirical_FROC_via_ggplot | Empirical FROC curve via ggplot2 | 
| error_message | Error Message for Data Format | 
| error_message_on_imaging_device_rhat_values | Error message *on a plot plane* (imaging device) | 
| error_MRMC | Comparison of Estimates and Truth in case of MRMC | 
| error_srsc | Validation via replicated datasets from a model at a given... | 
| error_srsc_error_visualization | Visualization for Error of Estimator | 
| error_srsc_variance_visualization | Visualization Of variance Analysis | 
| explanation_about_package_BayesianFROC | Explanation of this package | 
| explanation_for_what_curves_are_drawn | Print out about what curves are drawn | 
| extractAUC | Extract AUC | 
| extract_data_frame_from_dataList_MRMC | Extract sub data frame from list of FROC data | 
| extract_data_frame_from_dataList_srsc | extract data frame from datalist in case of srsc | 
| extract_EAP_by_array | Extract Etimates Preserving Array Format. | 
| extract_EAP_CI | Extracts Estimates as vectors from stanfit objects | 
| extract_estimates_MRMC | MRMC: Extract All Posterior Mean Estimates from... | 
| extract_parameters_from_replicated_models | Extract Estimates From Replicated MRMC Model | 
| false_and_its_rate_creator | False Alarm Creator for both cases of MRMC and srsc | 
| false_and_its_rate_creator_MRMC | MRMC: False Alarm Creator For each Modality and each Reader. | 
| fffaaabbb | Package Development tools and memo. | 
| file_remove | Execute before submission to delete redandunt files. | 
| fit_a_model_to | Fit a model to data | 
| fit_Bayesian_FROC | Fit a model to data | 
| fit_GUI | Fit with GUI via Shiny | 
| fit_GUI_dashboard | Fit with GUI via Shiny (Simple version) | 
| fit_GUI_MRMC | Fit with GUI via Shiny in case of MRMC | 
| fit_GUI_MRMC_new | Fit an MRMC model to data with Shiny GUI | 
| fit_GUI_ROC | Fit (very bad, MCMC not converge) ROC model with GUI via... | 
| fit_GUI_Shiny | Fit a model with GUI of Shiny | 
| fit_GUI_Shiny_MRMC | Fit with GUI via Shiny (in case of MRMC) | 
| fit_GUI_simple_from_apppp_file | Fit with GUI via Shiny | 
| fit_MRMC | Fit and Draw the FROC models (curves) | 
| fit_MRMC_casewise | Fit and Draw the FROC models (curves) | 
| fit_MRMC_versionTWO | Fit and Draw the FROC models (curves) version2. | 
| fit_Null_hypothesis_model_to_ | Fit the null model | 
| fit_srsc | fit a model to data in the case of A Single reader and A... | 
| fit_srsc_ROC | fit a model to data in the case of A Single reader and A... | 
| flatnames | from rstan package | 
| flat_one_par | Makes array names | 
| foo | without double quote | 
| fooo | taboo or | 
| foo_of_a_List_of_Arrays | Apply functions by each Array in a list | 
| FROC_curve | FROC curve as an embedding map | 
| from_array_to_vector | Transform from an * _array_* to a * _vector_* | 
| get_posterior_variance | Alternative of 'rstan::get_posterior_mean()' | 
| get_samples_from_Posterior_Predictive_distribution | Synthesizes Samples from Predictive Posterior Distributions... | 
| get_treedepth_threshold | get treedepth threshold | 
| ggplotFROC | Draw FROC curves by two parameters a and b | 
| ggplotFROC.EAP | Draw FROC curves by two parameters a and b | 
| give_name_srsc_CFP_CTP_vector | Give a Name For CTP CFP vector | 
| give_name_srsc_data | Give a name for srsc data list component | 
| grapes-greater-than-greater-than-grapes | Fit a model | 
| hit_generator_from_multinomial | Under Const | 
| hit_rate_adjusted_from_the_vector_p | hit rate adjusted from a vector p | 
| hits_creator_from_rate | MRMC Dataset Creator From Hit Rate. | 
| hits_false_alarms_creator_from_thresholds | Hits and False Alarms Creator | 
| hits_from_thresholds | MRMC Hit Creator from thresholds, mean and S.D. | 
| hits_rate_creator | MRMC Hit Rates Creator from Thresholds, Mean and S.D. | 
| horizontal_from_vertical_in_each_case | Transfer From Vertical placement into Horizontal placement... | 
| initial_values_specification_for_stan_in_case_of_MRMC | Initial values for HMC (Hamiltonian Moncte Carlo Markov... | 
| install_imports | Installer. | 
| inv_Phi | Inverse function of the Cumulative distribution function... | 
| is_length_zero | Is argument of length zero ? | 
| is_logical_0 | is.logical(0) | 
| is_na_in_vector | Detect NA in a vector | 
| is_na_list | Check whether a list contains NA or not. | 
| is_stanfitExtended | Check whether class is _stanfitExtended_ for any R object | 
| make_TeX | Make a TeX file for summary | 
| make_true_parameter_MRMC | Make a true model parameter and include it in this package | 
| metadata_srsc_per_image | Create metadata for MRMC data. | 
| metadata_to_DrawCurve_MRMC | Create metadata for MRMC data | 
| metadata_to_fit_MRMC | Create metadata for MRMC data | 
| metadata_to_fit_MRMC_casewise | Create metadata for MRMC data | 
| m_q_c_vector_from_M_Q_C | Creats vectors: 'm,q,c' from integers: 'M,Q,C' | 
| mu | Mean of signal: parameter of an MRMC model | 
| mu_truth | Mean of signal: parameter of an MRMC model | 
| mu_truth_creator_for_many_readers_MRMC_data | mu of MRMC model paramter | 
| name_of_param_whose_Rhat_is_maximal | Extract a name of parameter from StanfitExtended object (or... | 
| names_argMax | Extract name from a real vector whose component is the... | 
| p | Hit Rate: parameter of an MRMC model | 
| pairs_plot_if_divergent_transition_occurred | Pairs plot for divergent transition | 
| pause | Pause for Demo | 
| Phi | The Cumulative distribution function Phi(x) of the Standard... | 
| Phi_inv | Inverse function of the Cumulative distribution function... | 
| plot_curve_and_hit_rate_and_false_rate_simultaneously | Curve and signal distribution and noise d log Phi() for a... | 
| plot_dataset_of_ppp | plot datasets using calculation of ppp | 
| plot_dataset_of_ppp_MRMC | plot datasets using calculation of ppp | 
| plot_empirical_FROC_curves | Plot empirical FROC Curves by traditional ways of 'ggplot2' | 
| plot_FPF_and_TPF_from_a_dataset | Plot FPF and TPF from MRMC data | 
| plot_FPF_TPF_via_dataframe_with_split_factor | Scatter Plot of FPFs and TPFs via Splitting Factor | 
| plotFROC | Draw FROC curves by two parameters a and b | 
| plot_ROC_empirical_curves | Empirical ROC curve | 
| plot-stanfitExtended-missing-method | A generic function 'plot()' | 
| plot_test | # Definition of a method for the inherited class... | 
| pnorm_or_qnorm | pnorm or qnorm | 
| print_minimal_reproducible_code_in_case_of_MRMC | Show minimal code in MRMC | 
| print_stanfitExtended | Definition of a method for the inherited class... | 
| print-stanfitExtended-method | A method for a generic function 'print()' for class... | 
| prior_predictor | Predict some estimates of parameter | 
| prior_print_MRMC | Print What Prior Are Used | 
| prior_print_srsc | Print What Prior Are Used | 
| priorResearch | Research for Prior | 
| p_truth | Hit Rate: parameter of an MRMC model | 
| p_value_of_the_Bayesian_sense_for_chi_square_goodness_of_fit | P value for goodness of fit : No longer used in 2019 Oct | 
| rank_statistics_with_two_parameters | Rank Statistics | 
| replicate_model_MRMC | Replicate Models | 
| replicate_MRMC_dataList | MRMC: Replicates Datasets From Threshold, Mean and S.D. | 
| R_hat_max | Max R hat | 
| ROC_curve | Title | 
| ROC_data_creator | Synthesize ROC data | 
| ROC_data_creator2 | Synthesize ROC data | 
| sbcc | SBC | 
| seq_array_ind | Makes a Matrix from a vector of itegers | 
| show_codes_in_my_manuscript | Show R codes used in my manuscript | 
| showGM | the Graphical Model via PKG 'DiagrammeR' for the case of a... | 
| Simulation_Based_Calibration_histogram | Draw a histogram of the rank statistics | 
| Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbc | Simulation Based Calibration (SBC) for a single reader and a... | 
| Simulation_Based_Calibration_via_rstan_sbc_MRMC | Simiulation Based Calibration (SBC) for a single reader and a... | 
| size_of_return_value | Size of R object | 
| small_margin | Margin | 
| snippet_for_BayesianFROC | Edit Snippet | 
| sortAUC | Prints a Ranking for AUCs for MRMC Data | 
| Stan_code_validation | stan code | 
| stanfitExtended | 'stanfitExtended', an S4 class inherited from the S4 class... | 
| stanfit_from_its_inherited_class | Chage S4 class to stanfit | 
| stan_model_of_sbc | Creates an object of class stanfit of SBC | 
| stan_trace_of_max_rhat | a trace plot for a paramter whose R hat is largest | 
| StatisticForANOVA | Statistic for ANOVA | 
| summarize_MRMC | Summarize the estimates for MRMC case | 
| summary_EAP_CI_srsc | Summary | 
| Test_Null_Hypothesis_that_all_modalities_are_same | Test the Null hypothesis that all modalities are same | 
| the_row_number_of_logical_vector | Extract the row number from a logical vector | 
| trace_Plot | Trace plot | 
| TRUE.Counter.in.vector | Count 'TRUE' in a Vector whose components are all Logical R... | 
| v | Standard Deviation: parameter of an MRMC model | 
| validation.dataset_srsc | Errors of Estimator for any Given true parameter | 
| validation.draw_srsc | Draw Curves for validation dataset | 
| vertical_from_horizontal_in_each_case | Transfer From Horizontal placement into Vertical placement... | 
| viewdata | Build a table of FROC data | 
| viewdata_MRMC | View MRMC data | 
| viewdata_MRMC_casewise | View MRMC data | 
| viewdata_srsc | Build a table of data in the case of A Single reader and A... | 
| v_truth | Standard Deviation: parameter of an MRMC model | 
| v_truth_creator_for_many_readers_MRMC_data | v of MRMC model paramter | 
| waic | WAIC Calculator | 
| z | Threshold: parameter of an MRMC model | 
| z_from_dz | Thresholds from its difference | 
| z_truth | Threshold : parameter of an MRMC model | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.