R/DAISIE_PEI.R In DAISIE: Dynamical Assembly of Islands by Speciation, Immigration and Extinction

Documented in DAISIE_convertprobdistDAISIE_margprobdistDAISIE_numcolDAISIE_probdist

DAISIE_probdist_rhs <- function(t, x, m) {
x <- pmax(x, 0)
#message(t)
#utils::flush.console()
nx <- sqrt(length(x))
dim(x) <- c(nx, nx)
xx <- matrix(0, nx + 3, nx + 3)
xx[3:(nx + 2), 3:(nx + 2)] <- x
# 3 is where we start to count
dx <- m[[1]] * xx[3:(nx + 2), 2:(nx + 1)] +
m[[2]] * xx[3:(nx + 2), 4:(nx + 3)] +
m[[3]] * xx[4:(nx + 3), 3:(nx + 2)] +
m[[4]] * xx[2:(nx + 1), 4:(nx + 3)] +
m[[5]] * xx[1:(nx + 0), 4:(nx + 3)] +
m[[6]] * xx[2:(nx + 1), 3:(nx + 2)] -
m[[7]] * xx[3:(nx + 2), 3:(nx + 2)]
dim(dx) <- c(nx ^ 2, 1)
return(list(dx))
}

#' The joint distribution of endemics and non-endemics under the DAISIE model
#'
#' This function calculates the joint distribution of the number of endemics
#' and non-endemics for a given set of parameter values, a given mainland
#' species pool size and a given set of times
#'
#' To obtain a matrix of probabilities with endemics in rows and non-endemics
#' in columns for a certain time, one can run DAISIE_convertprobdist
#'
#' @inheritParams default_params_doc
#'
#' @return A matrix of dimensions 1 + length(tvec) and pars[2]^2 + 1] where the
#' first column contains the times at which the probabilities are evaluated and
#' the other columns contain the joint probabilities.
#' @author Rampal S. Etienne
#' @references Valente, L.M., A.B. Phillimore and R.S. Etienne (2015).
#' Equilibrium and non-equilibrium dynamics simultaneously operate in the
#' Galapagos islands. Ecology Letters 18: 844-852.
#' @keywords models
#' @examples
#'
#' ### Compute the probability distribution at t = 4 and t = 8, for a mainland pool
#' # size of 250 potential colonists and a vector of 5 parameters (cladogenesis,
#' # extinction, clade-level carrying capacity, immigration, anagenesis) starting
#' # from an empty island
#'
#' prob_dists <- DAISIE_probdist(
#'    pars1 = c(0.3,0.35,Inf,0.75,0.012),
#'    pars2 = c(100,250),
#'    tvec = c(4,8),
#'    initEI = c(0,0),
#'    initprobs = NULL
#'    )
#'
#' @export DAISIE_probdist
DAISIE_probdist <- function(pars1,
pars2,
tvec,
initEI = c(0, 0),
initprobs = NULL) {
lac <- pars1[1]
mu <- pars1[2]
ga <- pars1[4]
laa <- pars1[5]
lx <- pars2[1]
M <- pars2[2]
abstol <- 1e-16
reltol <- 1e-10
nx1 <- rep(-2:lx, lx + 3)
nx1 <- nx1 * (nx1 >= 0)
dim(nx1) <- c(lx + 3, lx + 3)
nx2 <- t(nx1)
m <- list()
m[[1]] <- ga * (M - nx2[3:(lx + 2), 2:(lx + 1)])  # I - 1
m[[2]] <- mu * nx2[3:(lx + 2), 4:(lx + 3)]        # I + 1
m[[3]] <- mu * nx1[4:(lx + 3), 3:(lx + 2)]        # E + 1
m[[4]] <- laa * nx2[3:(lx + 2), 4:(lx + 3)]       # I + 1
m[[5]] <- lac * nx2[3:(lx + 2), 4:(lx + 3)]       # I + 1
m[[6]] <- lac * nx1[2:(lx + 1), 3:(lx + 2)]       # E - 1
m[[7]] <- (mu + lac) * nx1[3:(lx + 2), 3:(lx + 2)] +
(mu + laa + lac) * nx2[3:(lx + 2), 3:(lx + 2)] +
ga * (M - nx2[3:(lx + 2), 3:(lx + 2)]) # E, I, I
if (!is.null(initprobs)) {
probs <- initprobs
} else {
probs <- matrix(0, lx, lx)
probs[initEI[1] + 1, initEI[2] + 1] <- 1
}
dim(probs) <- c(lx * lx, 1)
y <- deSolve::ode(probs,
c(0, tvec),
DAISIE_probdist_rhs,
m,
rtol = reltol,
atol = abstol,
method = "ode45")
return(y)
}

#' Converts the joint distribution of endemics and non-endemics under the
#' DAISIE model to list format
#'
#' This function converts the joint distribution of the number of endemics and
#' non-endemics from the matrix format of DAISIE_probdist to a list format
#'
#' @inheritParams default_params_doc
#'
#' @return A list of length nrow(pb) containing matrices of square dimensions
#' of size sqrt(ncol - 1) containing the joint probabilities with endemics in
#' the rows and non-endemics in the columns. The last element of the list is a
#' vector a times at which the joint probability distribution is evaluated.
#' @author Rampal S. Etienne
#' @references Valente, L.M., A.B. Phillimore and R.S. Etienne (2015).
#' Equilibrium and non-equilibrium dynamics simultaneously operate in the
#' Galapagos islands. Ecology Letters 18: 844-852.
#' @keywords models
#' @examples
#'
#' ### Compute the probability distribution at t = 4 and t = 8, for a mainland pool
#' # size of 250 potential colonists and a vector of 5 parameters (cladogenesis, extinction,
#' # clade-level carrying capacity, immigration, anagenesis) starting from an empty
#' # island; store in list format
#'
#' pb <- DAISIE_probdist(
#'    pars1 = c(0.3,0.35,Inf,0.75,0.012),
#'    pars2 = c(100,250),
#'    tvec = c(4,8),
#'    initEI = c(0,0),
#'    initprobs = NULL
#'    )
#' prob_dists <- DAISIE_convertprobdist(pb)
#'
#' @export DAISIE_convertprobdist
DAISIE_convertprobdist <- function(pb) {
out <- list()
dime <- dim(pb)
for (i in 1:dime[1]) {
pb2 <- pb[i, 2:dime[2]]
d <- sqrt(dime[2] - 1)
dim(pb2) <- c(d, d)
out[[i]] <- pb2
}
out[[i + 1]] <- pb[, 1]
return(out)
}

#' The marginal distribution of endemics and non-endemics under the DAISIE
#' model
#'
#' This function calculates the marginal distribution of the number of endemics
#' and non-endemics and their sum for a given set of parameter values, a given
#' mainland species pool size and a given set of times
#'
#' @inheritParams default_params_doc
#'
#' @return \item{out}{A list of three vectors: \cr \cr \code{pE} The
#' probability distribution of the number of endemic species \cr \code{pI} The
#' probability distribution of the number of non-endemic species \cr \code{pN}
#' The probability distribution of the sum of the number of endemics and
#' non-endemics }
#' @author Rampal S. Etienne
#' @references Valente, L.M., A.B. Phillimore and R.S. Etienne (2015).
#' Equilibrium and non-equilibrium dynamics simultaneously operate in the
#' Galapagos islands. Ecology Letters 18: 844-852.
#' @keywords models
#' @examples
#'
#' ### Compute the marginal probability distributions at t = 4 and t = 8, for a mainland
#' # pool size of 250 potential colonists and a vector of 5 parameters (cladogenesis,
#' # extinction, clade-level carrying capacity, immigration, anagenesis) starting from
#' # an empty island
#'
#' marg_prob_dists <- DAISIE_margprobdist(
#'    pars1 = c(0.3,0.35,Inf,0.75,0.012),
#'    pars2 = c(100,250),
#'    tvec = c(4,8),
#'    initEI = c(5,1),
#'    initprobs = NULL
#'    )
#'
#' @export DAISIE_margprobdist
DAISIE_margprobdist <- function(pars1,
pars2,
tvec,
initEI = c(0,0),
initprobs = NULL,
pb = NULL) {
if(is.null(pb))
{
pb = DAISIE_probdist(pars1,pars2,tvec,initEI,initprobs)
}
lx = pars2[1]
pbE = matrix(nrow = length(tvec) + 1,ncol = lx)
pbI = matrix(nrow = length(tvec) + 1,ncol = lx)
pbN = matrix(nrow = length(tvec) + 1,ncol = 2 * lx - 1)
for(i in 1:(length(tvec) + 1))
{
pbEI = pb[i,2:(lx * lx + 1)]
dim(pbEI) = c(lx,lx)
pbE[i,1:lx] = rowSums(pbEI)
pbI[i,1:lx] = colSums(pbEI)
pbN[i,1:(2 * lx - 1)] = antidiagSums(pbEI)
}
out = list(pbE,pbI,pbN)
names(out) = c("pE","pI","pN")
return(out)
}

DAISIE_numcol_dist = function(pars1,
pars2,
tvec) {
y = DAISIE_probdist(pars1,c(pars2[1],1),tvec)
lx = pars2[1]
probs00 = y[2:(length(tvec) + 1),2]
probstp <- y[2, 2:(lx * lx + 1)]
probseq <- y[3, 2:(lx * lx + 1)]
dim(probstp) <- c(lx, lx)
dim(probseq) <- c(lx, lx)
ee <- rep(0:(lx - 1), lx)
dim(ee) <- c(lx, lx)
expEtpapprox <- sum(ee * probstp)
expEINtp <- DAISIE_ExpEIN(tvec[1], pars1, 1)
message("The total sum of the probabilities at the first time is ", sum(probstp))
message("The approximation for the expected number of endemics is ", expEtpapprox)
message("The true value for the expected number of endemics is ", expEINtp[[1]])
expEteqapprox <- sum(ee * probseq)
expEINteq <- DAISIE_ExpEIN(Inf, pars1, 1)
message("The total sum of the probabilities at the second time is ", sum(probstp))
message("The approximation for the expected number of endemics is ", expEteqapprox)
message("The true value for the expected number of endemics is ", expEINteq[[1]])
utils::flush.console()
M <- pars2[2]
if (!is.na(pars1[11])) {
Mnonfinches <- M - round(pars1[11] * M)
} else {
Mnonfinches <- M
}
pC <- stats::dbinom(0:Mnonfinches, Mnonfinches, 1 - probs00)
expC <- Mnonfinches * (1 - probs00)
message(
"The approximation for the expected number of colonizations is ", expC
)
out <- list(pC, expC, expEINtp, expEtpapprox, expEINteq, expEteqapprox)
names(out) <- list(
"pC",
"expC",
"expEINtp",
"expEtpapprox",
"expEINteq",
"expEteqapprox"
)

return(out)
}

#' The expectation and marginal distribution of the number of colonizations
#' (lineages) under the DAISIE model
#'
#' This function calculates expectation and marginal distribution of the number
#' of colonizations (lineages) for a given set of parameter values, a given
#' mainland species pool size and a given set of times
#'
#' @inheritParams default_params_doc
#'
#' @return \item{out}{A list of three vectors: \cr \cr \code{expC} The
#' expectation of the number of colonizations/lineages at the given times \cr
#' \code{pC} The probability distribution of the number of colonizations
#' (lineages) at the given times\cr }
#' @author Rampal S. Etienne
#' @references Valente, L.M., A.B. Phillimore and R.S. Etienne (2015).
#' Equilibrium and non-equilibrium dynamics simultaneously operate in the
#' Galapagos islands. Ecology Letters 18: 844-852.
#' @keywords models
#' @examples
#'
#' ### Compute the marginal probability distributions at t = 4 and t = 8, for a mainland
#' # pool size of 250 potential colonists and a vector of 5 parameters (cladogenesis,
#' # extinction, clade-level carrying capacity, immigration, anagenesis) starting from
#' # an empty island
#'
#' numcol <- DAISIE_numcol(
#'    pars1 = c(0.3,0.35,Inf,0.75,0.012),
#'    pars2 = c(100,250),
#'    tvec = c(4,8),
#'    initEI = list(c(0,1),c(0,2),c(3,1))
#'    )
#'
#' @export DAISIE_numcol
DAISIE_numcol <- function(pars1, pars2, tvec, initEI = NULL) {
lx <- pars2[1]
M <- pars2[2]
nC <- length(initEI)
lt <- length(tvec)
unique_initEI <- unique(initEI)
nuC <- length(unique_initEI)
if (!is.na(pars1[11])) {
Mnonfinches <- M - round(pars1[11] * M) - nC
} else {
Mnonfinches <- M - nC
}
pC <- matrix(nrow = lt, ncol = Mnonfinches + nC + 1)
y <- DAISIE_probdist(pars1, c(pars2[1], 1), tvec, initEI = c(0, 0), initprobs = NULL)
probs00 <- y[2:(lt + 1), 2]
expC <- Mnonfinches * (1 - probs00)
lpC <- Mnonfinches + 1
for (j in 1:lt) {
pC[j, 1:lpC] <- stats::dbinom(0:Mnonfinches, Mnonfinches, 1 - probs00[j])
}
if (nuC > 0) {
for (i in 1:nuC) {
abund_initEI <- 0
for (j in 1:nC) {
if (prod(initEI[[j]] == unique_initEI[[i]])) {
abund_initEI <- abund_initEI + 1
}
}
y <- DAISIE_probdist(pars1, c(pars2[1], 1), tvec, initEI = unique_initEI[[i]], initprobs = NULL)
probs00 <- y[2:(lt + 1), 2]
expC <- expC + abund_initEI * (1 - probs00)
lpC <- lpC + abund_initEI
for (j in 1:lt) {
pC[j, 1:lpC] <- DDD::conv(pC[j, 1:(lpC - abund_initEI)], stats::dbinom(0:abund_initEI, abund_initEI, 1 - probs00[j]))
}
}
}
names(expC) <- tvec
colnames(pC) <- 0:(lpC - 1)
rownames(pC) <- tvec
out <- list(expC, pC)
names(out) <- c("expC", "pC")
return(out)
}

DAISIE_KLdist <- function(pars1, pars2, tvec) {
y <- DAISIE_probdist(pars1, pars2, tvec)
lx <- pars2[1]
M <- pars2[2]
tp <- tvec[1]
teq <- tvec[2]
probstp <- y[2, 2:(lx * lx + 1)]
probseq <- y[3, 2:(lx * lx + 1)]
dim(probstp) <- c(lx, lx)
dim(probseq) <- c(lx, lx)
ee <- rep(0:(lx - 1), lx)
dim(ee) <- c(lx, lx)
expEapprox <- sum(ee * probstp)
message(sum(probstp))
message(expEapprox)
message(DAISIE_ExpEIN(teq, pars1, M)[[1]])
expEapprox <- sum(ee * probseq)
message(sum(probseq))
message(expEapprox)
message(DAISIE_ExpEIN(Inf, pars1, M)[[1]])
KLdist <- sum(probseq * log(probseq / probstp))
return(KLdist)
}

Try the DAISIE package in your browser

Any scripts or data that you put into this service are public.

DAISIE documentation built on Oct. 22, 2023, 1:06 a.m.