Nothing
#'Plots for each bridgeable assays between two platforms / products
#' Author : Amrita Kar
#'
#'Generates a combined plot per assay containing a violin and boxplot plot
#' for IQR ranges ;
#'correlation plot of NPX values ;
#'a median count bar plot and
#'KS plots from 2 platforms
#'
#' @param data data frame of cross-product bridge normalized data generated by
#' olink_normalization()
#' @param median_counts_threshold Numeric value to use for median counts
#' threshold for the two platforms. Default is 150
#' @param min_count Numeric value to use for minimum counts
#' for the two platforms. Default is 10
#'
#' @return An object of class "ggplot", 4 combined plots for each protein.
#' @export
#' @examples
#' \donttest{
#'
#'npx_ht <- OlinkAnalyze:::data_ht_small |>
#' dplyr::filter(SampleType == "SAMPLE") |>
#' dplyr::mutate(Project = "data1")
#'
#'npx_3072 <- OlinkAnalyze:::data_3k_small |>
#' dplyr::filter(SampleType == "SAMPLE") |>
#' dplyr::mutate(Project = "data2")
#'
#'overlapping_samples <- unique(intersect(npx_ht |>
#' dplyr::distinct(SampleID) |>
#' dplyr::pull(),
#' npx_3072 |>
#' dplyr::distinct(SampleID) |>
#' dplyr::pull()))
#'
#'data <- OlinkAnalyze::olink_normalization(df1 = npx_ht,
#' df2 = npx_3072,
#' overlapping_samples_df1 =
#' overlapping_samples,
#' df1_project_nr = "Explore HT",
#' df2_project_nr = "Explore 3072",
#' reference_project = "Explore HT")
#'
#'olinkids <- unique(paste0(data$OlinkID,"_",data$Assay))
#'results <- olink_bridgeability_plot(data = data,
#' median_counts_threshold = 150,
#' min_count = 10)
#'names(results) <- olinkids
#'}
olink_bridgeability_plot <- function(data,
median_counts_threshold = 150,
min_count = 10) {
if (!requireNamespace("ggpubr", quietly = TRUE)) {
stop("These plots require the ggpubr package.
Please install ggpubr before continuing.
install.packages(\"ggpubr\")")
}
set.seed(seed = 1)
out_plts <- list()
ids <- data |>
dplyr::select(OlinkID, .data[["BridgingRecommendation"]]) |> #HT OlinkID
dplyr::distinct() |>
dplyr::pull(OlinkID)
# Adjusting the platform and add color green for bridgeable assays
data <- data |>
dplyr::filter(Count > min_count) |>
dplyr::mutate(
textcol = dplyr::if_else(stringr::str_detect( # nolint
.data[["BridgingRecommendation"]], # nolint
"No"), "#A61F04", "#00559E"))
platforms <- unique(data$Project)
if (length(platforms) != 2) {
cli::cli_abort(
message = paste0("Expect 2 platforms. ", length(platforms), "found.")
)
}
# IQR/Range plot ----
iqr_range_plt <- function(data = data, id = id) {
col <- data |>
dplyr::filter(OlinkID %in% id) |>
dplyr::pull(.data[["textcol"]]) |>
unique()
iqr_range_plt <- data |>
dplyr::filter(OlinkID %in% id) |>
ggplot2::ggplot(ggplot2::aes(x = paste(Assay, OlinkID, sep = "\n"),
y = NPX, fill = Project)) +
ggplot2::geom_violin(alpha = 0.4,
position = ggplot2::position_nudge(x = 0),
width = 0.4) +
ggplot2::geom_boxplot(width = .1, outlier.shape = NA, alpha = 0.4) +
ggplot2::scale_fill_manual(values = c("#FF1F05", "#00C7E1")) +
ggplot2::scale_color_manual(values = c("#FF1F05", "#00C7E1")) +
ggplot2::labs(x = "Assay", y = "NPX Distribution", fill = "Platform: ") +
ggplot2::guides(fill = ggplot2::guide_legend(nrow = 1, byrow = TRUE)) +
OlinkAnalyze::set_plot_theme(font = "") +
ggplot2::theme(axis.text.x = ggplot2::element_blank(),
strip.text = ggplot2::element_text(colour = col)) +
ggplot2::facet_wrap(. ~ paste(Assay, OlinkID, sep = "\n"),
scales = "free")
return(iqr_range_plt)
}
# Correlation plot ----
r2_plt <- function(data = data, id = id) {
data1 <- data |>
dplyr::filter(Project %in% platforms[1],
OlinkID %in% id)
data2 <- data |>
dplyr::filter(Project %in% platforms[2],
OlinkID %in% id)
data_wider <- data1 |>
dplyr::select(SampleID, Assay, Count, OlinkID, UniProt, NPX,
.data[["textcol"]]) |>
dplyr::inner_join(data2 |>
dplyr::select(SampleID, Assay, Count, OlinkID,
UniProt, NPX, .data[["textcol"]]),
by = c("SampleID", "OlinkID", "Assay", "UniProt",
"textcol"),
suffix = c(platforms[1], platforms[2]))
axis_names <- grep("NPX", colnames(data_wider), value = TRUE)
r2_lm <- data_wider |>
dplyr::mutate(r2_lm = stats::cor(x = .data[[axis_names[1]]],
y = .data[[axis_names[2]]],
use = "everything",
method = "pearson") ^ 2) |>
dplyr::pull(r2_lm) |>
unique()
r2_lm <- signif(r2_lm, 2)
if (r2_lm < 0.2)
caps <- paste0("Possibly bridging background to background")
else caps <- ""
col <- data_wider |>
dplyr::filter(OlinkID %in% id) |>
dplyr::pull(.data[["textcol"]]) |>
unique()
r2_plt <- data_wider |>
ggplot2::ggplot(ggplot2::aes(x = .data[[axis_names[1]]],
y = .data[[axis_names[2]]])) +
ggplot2::geom_point(color = "blue", alpha = 0.4) +
ggplot2::geom_smooth(method = "lm", color = "black") +
ggpubr::stat_cor(method = "pearson",
ggplot2::aes(label =
ggplot2::after_stat(.data[["rr.label"]])),
geom = "label") +
OlinkAnalyze::set_plot_theme(font = "") +
OlinkAnalyze::olink_color_discrete() +
ggplot2::facet_wrap(. ~ paste(Assay, OlinkID, sep = "\n"),
scales = "free") +
ggplot2::theme(strip.text = ggplot2::element_text(colour = col)) +
ggplot2::labs(caption = caps)
return(r2_plt)
}
# Median counts plot ----
counts_plt <- function(data = data, median_counts_threshold,
id = id) {
col <- data |>
dplyr::filter(OlinkID %in% id) |>
dplyr::pull(.data[["textcol"]]) |>
unique()
counts_plt <- data |>
dplyr::filter(OlinkID %in% id) |>
dplyr::group_by(OlinkID, Project) |>
dplyr::mutate(median_count = median(Count, na.rm = TRUE)) |>
dplyr::ungroup() |>
dplyr::mutate(Assay = factor(paste(Assay, OlinkID, sep = "\n")),
Project = factor(Project)) |>
dplyr::group_by(Assay, Project) |>
dplyr::reframe(n = .data[["median_count"]]) |>
dplyr::ungroup() |>
dplyr::distinct() |>
ggplot2::ggplot(ggplot2::aes(x = Assay, fill = Project, y = n,
label = n)) +
ggplot2::geom_col(width = 0.5, position = "dodge") +
ggplot2::geom_text(position = ggplot2::position_dodge(0.5),
vjust = 0.5) +
ggplot2::labs(y = "Median Count", fill = "Platform:") +
OlinkAnalyze::set_plot_theme(font = "") +
ggplot2::theme(axis.text.x = ggplot2::element_blank(),
strip.text = ggplot2::element_text(colour = col)) +
ggplot2::facet_wrap(. ~ Assay, scales = "free") +
ggplot2::geom_hline(yintercept = median_counts_threshold,
color = "#FF1F05", linewidth = 0.7)
return(counts_plt)
}
# KS plot ----
ks_plt <- function(data = data, id = id) {
data1 <- data |>
dplyr::filter(Project %in% platforms[1],
OlinkID %in% id)
data2 <- data |>
dplyr::filter(Project %in% platforms[2],
OlinkID %in% id)
# Calculate empirical cumulative distribution function (ECDF) per platform
ecdf_data1 <- stats::ecdf(data1$NPX)
ecdf_data2 <- stats::ecdf(data2$NPX)
# Find min/max statistics to draw line between points of greatest distance
min_max <- seq(min(data1$NPX, data2$NPX), max(data1$NPX, data2$NPX),
length.out = length(data1$NPX))
x0 <- min_max[which(abs(ecdf_data1(min_max) - ecdf_data2(min_max)) ==
max(abs(ecdf_data1(min_max) - ecdf_data2(min_max))))]
y0 <- ecdf_data1(x0)
y1 <- ecdf_data2(x0)
ks_results <- stats::ks.test(data1$NPX, data2$NPX,
alternative = "two.sided", exact = NULL,
simulate.p.value = FALSE, B = 2000L)
# Main KS plot construction
ks_plt <- data |>
dplyr::filter(OlinkID %in% id) |>
ggplot2::ggplot(ggplot2::aes(x = NPX, group = Project, color = Project)) +
ggplot2::scale_color_manual(values = c("#FF1F05", "#00C7E1")) +
ggplot2::stat_ecdf(linewidth = 1) +
ggplot2::theme_bw(base_size = 10) +
ggplot2::theme(legend.position = "top") +
ggplot2::labs(x = "NPX", y = "ECDF") +
ggplot2::geom_segment(ggplot2::aes(x = x0[1], y = y0[1], xend = x0[1],
yend = y1[1]),
linetype = "dashed", color = "black") +
ggplot2::geom_point(ggplot2::aes(x = x0[1], y = y0[1]), color = "black",
size = 2) +
ggplot2::geom_point(ggplot2::aes(x = x0[1], y = y1[1]), color = "black",
size = 2) +
ggplot2::facet_wrap(. ~ paste(Assay, OlinkID, sep = "\n"),
scales = "free", nrow = 4, ncol = 5) +
ggplot2::annotate("text", x = Inf, y = 0.1, hjust = 1,
cex = 4,
label = paste0("D = ", signif(ks_results$statistic,
2))) +
ggplot2::theme(legend.title = ggplot2::element_blank()) +
OlinkAnalyze::set_plot_theme(font = "") +
ggplot2::labs(color = "Platform:")
return(ks_plt)
}
# Bridgeable plot ----
for (i in seq_along(ids)){
final_plts <- list()
message(paste0("Working on OlinkID : ", i))
final_plts[["iqr"]] <- iqr_range_plt(data = data, id = ids[i])
message("IQR plot done")
final_plts[["r2"]] <- r2_plt(data = data, id = ids[i])
message("R2 plot done")
final_plts[["counts"]] <- counts_plt(data = data,
median_counts_threshold, id = ids[i])
message("Counts plot done")
final_plts[["ks"]] <- ks_plt(data = data, id = ids[i])
message("KS plot done")
out1 <- ggpubr::ggarrange(final_plts$iqr, final_plts$counts,
nrow = 1, ncol = 2, legend = "top",
common.legend = TRUE)
out2 <- ggpubr::ggarrange(final_plts$r2, out1,
nrow = 1, ncol = 2, legend = "right",
common.legend = FALSE)
out <- ggpubr::ggarrange(out2, final_plts$ks,
nrow = 2, ncol = 1, legend = "top",
common.legend = FALSE)
rm(out1, out2)
out_plts[[i]] <- out
rm(out, final_plts)
}
return(out_plts)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.