Nothing
# This script generated reference data for olink_normalization using
# OlinkAnalyze v3.8.2
# datasets ----
lst_df <- list()
## npx_data1 ----
# npx_data1 does not contain column Normalization
lst_df$df1_no_norm <- npx_data1 |>
dplyr::select(
-dplyr::all_of(
c("Subject", "Treatment", "Site", "Time", "Project")
)
)
# npx_data1 with Normalization column
lst_df$df1_norm <- npx_data1 |>
dplyr::select(
-dplyr::all_of(
c("Subject", "Treatment", "Site", "Time", "Project")
)
) |>
dplyr::mutate(
Normalization = "Intensity"
)
# npx_data1 with Normalization column, but no LOD column
lst_df$df1_no_lod <- npx_data1 |>
dplyr::select(
-dplyr::all_of(
c("Subject", "Treatment", "Site", "Time", "Project", "LOD")
)
) |>
dplyr::mutate(
Normalization = "Intensity"
)
# npx_data1 with Normalization column, and PlateLOD+MaxLOD instead of LOD
lst_df$df1_multiple_lod <- npx_data1 |>
dplyr::select(
-dplyr::all_of(
c("Subject", "Treatment", "Site", "Time", "Project")
)
) |>
dplyr::rename(
"PlateLOD" = "LOD"
) |>
dplyr::mutate(
Normalization = "Intensity",
MaxLOD = .data[["PlateLOD"]] + 0.5
)
## npx_data2 ----
# npx_data2 does not contain column Normalization
lst_df$df2_no_norm <- npx_data2 |>
dplyr::select(
-dplyr::all_of(
c("Subject", "Treatment", "Site", "Time", "Project")
)
)
# npx_data2 with Normalization column
lst_df$df2_norm <- npx_data2 |>
dplyr::select(
-dplyr::all_of(
c("Subject", "Treatment", "Site", "Time", "Project")
)
) |>
dplyr::mutate(
Normalization = "Intensity"
)
# npx_data2 with Normalization column, but no LOD column
lst_df$df2_no_lod <- npx_data2 |>
dplyr::select(
-dplyr::all_of(
c("Subject", "Treatment", "Site", "Time", "Project", "LOD")
)
) |>
dplyr::mutate(
Normalization = "Intensity"
)
# npx_data2 with Normalization column, and PlateLOD+MaxLOD instead of LOD
lst_df$df2_multiple_lod <- npx_data2 |>
dplyr::select(
-dplyr::all_of(
c("Subject", "Treatment", "Site", "Time", "Project")
)
) |>
dplyr::rename(
"PlateLOD" = "LOD"
) |>
dplyr::mutate(
Normalization = "Intensity",
MaxLOD = .data[["PlateLOD"]] - 0.2
)
## reference_medians ----
lst_df$ref_med <- npx_data1 |>
dplyr::group_by(
dplyr::pick(
c("OlinkID")
)
) |>
dplyr::summarise(
mu_npx = mean(x = .data[["NPX"]], na.rm = TRUE) / 3L,
mu_lod = mean(x = .data[["LOD"]], na.rm = TRUE),
Reference_NPX = dplyr::if_else(
.data[["mu_lod"]] == 0,
.data[["mu_npx"]],
.data[["mu_lod"]]
),
.groups = "drop"
) |>
dplyr::select(
dplyr::all_of(
c("OlinkID", "Reference_NPX")
)
)
# samples ----
lst_sample <- list()
# sample subset to reduce file size ----
lst_sample$sample_subset <- c("A6", "A38", "B47", "B22", "A43", "D75", "D79",
"C66", "B43", "B70", "D52", "A58", "B71", "A50",
"D1", "B8")
## bridge samples ----
lst_sample$bridge_samples <- intersect(
x = npx_data1$SampleID,
y = npx_data2$SampleID
) |>
(\(x) x[!grepl(pattern = "CONTROL_SAMPLE", x = x)])()
## npx_data1 samples ----
lst_sample$df1_all <- npx_data1$SampleID |>
unique() |>
(\(x) x[!grepl(pattern = "CONTROL_SAMPLE", x = x)])()
lst_sample$df1_subset <- npx_data1$SampleID |>
unique() |>
sort() |>
(\(x) x[!grepl(pattern = "CONTROL_SAMPLE", x = x)])() |>
head(20L)
## npx_data2 samples ----
lst_sample$df2_all <- npx_data2$SampleID |>
unique() |>
(\(x) x[!grepl(pattern = "CONTROL_SAMPLE", x = x)])()
lst_sample$df2_subset <- npx_data2$SampleID |>
unique() |>
sort() |>
(\(x) x[!grepl(pattern = "CONTROL_SAMPLE", x = x)])() |>
head(15L)
# normalize ----
lst_norm <- list()
## bridge normalization ----
lst_norm$bridge_norm <- list()
### df1_no_norm + df2_no_norm ----
lst_norm$bridge_norm$no_norm <- olink_normalization(
df1 = lst_df$df1_no_norm,
df2 = lst_df$df2_no_norm,
overlapping_samples_df1 = lst_sample$bridge_samples,
df1_project_nr = "df1_no_norm",
df2_project_nr = "df2_no_norm",
reference_project = "df1_no_norm"
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
)
### df1_norm + df2_norm ----
lst_norm$bridge_norm$norm <- olink_normalization(
df1 = lst_df$df1_norm,
df2 = lst_df$df2_norm,
overlapping_samples_df1 = lst_sample$bridge_samples,
df1_project_nr = "df1_norm",
df2_project_nr = "df2_norm",
reference_project = "df1_norm"
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
)
### df1_no_lod + df2_no_lod ----
lst_norm$bridge_norm$no_lod <- olink_normalization(
df1 = lst_df$df1_no_lod,
df2 = lst_df$df2_no_lod,
overlapping_samples_df1 = lst_sample$bridge_samples,
df1_project_nr = "df1_no_lod",
df2_project_nr = "df2_no_lod",
reference_project = "df1_no_lod"
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
)
### df1_multiple_lod + df2_multiple_lod ----
lst_norm$bridge_norm$multiple_lod <- olink_normalization(
df1 = lst_df$df1_multiple_lod,
df2 = lst_df$df2_multiple_lod,
overlapping_samples_df1 = lst_sample$bridge_samples,
df1_project_nr = "df1_multiple_lod",
df2_project_nr = "df2_multiple_lod",
reference_project = "df1_multiple_lod"
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
)
## subset normalization ----
lst_norm$subset_norm <- list()
### df1_no_norm + df2_no_norm ----
lst_norm$subset_norm$no_norm <- olink_normalization(
df1 = lst_df$df1_no_norm,
df2 = lst_df$df2_no_norm,
overlapping_samples_df1 = lst_sample$df1_subset,
overlapping_samples_df2 = lst_sample$df2_subset,
df1_project_nr = "df1_no_norm",
df2_project_nr = "df2_no_norm",
reference_project = "df1_no_norm"
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
)
### df1_norm + df2_norm ----
lst_norm$subset_norm$norm <- olink_normalization(
df1 = lst_df$df1_norm,
df2 = lst_df$df2_norm,
overlapping_samples_df1 = lst_sample$df1_subset,
overlapping_samples_df2 = lst_sample$df2_subset,
df1_project_nr = "df1_norm",
df2_project_nr = "df2_norm",
reference_project = "df1_norm"
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
)
### df1_no_lod + df2_no_lod ----
lst_norm$subset_norm$no_lod <- olink_normalization(
df1 = lst_df$df1_no_lod,
df2 = lst_df$df2_no_lod,
overlapping_samples_df1 = lst_sample$df1_subset,
overlapping_samples_df2 = lst_sample$df2_subset,
df1_project_nr = "df1_no_lod",
df2_project_nr = "df2_no_lod",
reference_project = "df1_no_lod"
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
)
### df1_multiple_lod + df2_multiple_lod ----
lst_norm$subset_norm$multiple_lod <- olink_normalization(
df1 = lst_df$df1_multiple_lod,
df2 = lst_df$df2_multiple_lod,
overlapping_samples_df1 = lst_sample$df1_subset,
overlapping_samples_df2 = lst_sample$df2_subset,
df1_project_nr = "df1_multiple_lod",
df2_project_nr = "df2_multiple_lod",
reference_project = "df1_multiple_lod"
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
)
## intensity normalization ----
lst_norm$intensity_norm <- list()
### df1_no_norm + df2_no_norm ----
lst_norm$intensity_norm$no_norm <- olink_normalization(
df1 = lst_df$df1_no_norm,
df2 = lst_df$df2_no_norm,
overlapping_samples_df1 = lst_sample$df1_all,
overlapping_samples_df2 = lst_sample$df2_all,
df1_project_nr = "df1_no_norm",
df2_project_nr = "df2_no_norm",
reference_project = "df1_no_norm"
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
)
### df1_norm + df2_norm ----
lst_norm$intensity_norm$norm <- olink_normalization(
df1 = lst_df$df1_norm,
df2 = lst_df$df2_norm,
overlapping_samples_df1 = lst_sample$df1_all,
overlapping_samples_df2 = lst_sample$df2_all,
df1_project_nr = "df1_norm",
df2_project_nr = "df2_norm",
reference_project = "df1_norm"
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
)
### df1_no_lod + df2_no_lod ----
lst_norm$intensity_norm$no_lod <- olink_normalization(
df1 = lst_df$df1_no_lod,
df2 = lst_df$df2_no_lod,
overlapping_samples_df1 = lst_sample$df1_all,
overlapping_samples_df2 = lst_sample$df2_all,
df1_project_nr = "df1_no_lod",
df2_project_nr = "df2_no_lod",
reference_project = "df1_no_lod"
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
)
### df1_multiple_lod + df2_multiple_lod ----
lst_norm$intensity_norm$multiple_lod <- olink_normalization(
df1 = lst_df$df1_multiple_lod,
df2 = lst_df$df2_multiple_lod,
overlapping_samples_df1 = lst_sample$df1_all,
overlapping_samples_df2 = lst_sample$df2_all,
df1_project_nr = "df1_multiple_lod",
df2_project_nr = "df2_multiple_lod",
reference_project = "df1_multiple_lod"
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
)
## reference median normalization ----
lst_norm$ref_med_norm <- list()
### df1_no_norm ----
lst_norm$ref_med_norm$no_norm <- olink_normalization(
df1 = lst_df$df1_no_norm,
overlapping_samples_df1 = lst_sample$df1_subset,
reference_medians = lst_df$ref_med
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
) |>
dplyr::mutate(
Project = "df1_no_norm"
) |>
dplyr::select(
dplyr::all_of(
c(colnames(lst_df$df1_no_norm), "Adj_factor", "Project")
)
)
### df1_norm ----
lst_norm$ref_med_norm$norm <- olink_normalization(
df1 = lst_df$df1_norm,
overlapping_samples_df1 = lst_sample$df1_subset,
reference_medians = lst_df$ref_med
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
) |>
dplyr::mutate(
Project = "df1_norm"
) |>
dplyr::select(
dplyr::all_of(
c(colnames(lst_df$df1_norm), "Adj_factor", "Project")
)
)
### df1_no_lod ----
lst_norm$ref_med_norm$no_lod <- olink_normalization(
df1 = lst_df$df1_no_lod,
overlapping_samples_df1 = lst_sample$df1_subset,
reference_medians = lst_df$ref_med
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
) |>
dplyr::mutate(
Project = "df1_no_lod"
) |>
dplyr::select(
dplyr::all_of(
c(colnames(lst_df$df1_no_lod), "Adj_factor", "Project")
)
)
### df1_multiple_lod ----
lst_norm$ref_med_norm$multiple_lod <- olink_normalization(
df1 = lst_df$df1_multiple_lod,
overlapping_samples_df1 = lst_sample$df1_subset,
reference_medians = lst_df$ref_med
) |>
dplyr::filter(
.data[["SampleID"]] %in% lst_sample$sample_subset
) |>
dplyr::mutate(
Project = "df1_multiple_lod"
) |>
dplyr::select(
dplyr::all_of(
c(colnames(lst_df$df1_multiple_lod), "Adj_factor", "Project")
)
)
# save data ----
saveRDS(
object = list(
lst_df = lst_df,
lst_sample = lst_sample,
lst_norm = lst_norm
),
file = "tests/data/ref_results_norm.rds",
version = 2L,
compress = "gzip"
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.