R/vis_identifier_dim_dist.R

Defines functions vis_identifier_dim_dist

Documented in vis_identifier_dim_dist

#' Visualize the distribution difference of samples after Molecule Identifier dimensionality reduction analysis
#'
#' NOTE: the dataset must be dense matrix in UCSC Xena data hubs.
#'
#'
#' @param dataset the dataset to obtain identifiers.
#' @param ids the molecule identifiers.
#' @param grp_df When `dataset` and `id` are all not `NULL`, it should be a `data.frame` with 2 columns.
#' - The first column refers to sample ID.
#' - The second column refers to groups indicated in axis X.
#' @param samples default is `NULL`, can be common sample names for two datasets.
#' @param return.data whether to reture the raw meta/matrix data (list) instead of plot
#' @param DR_method the dimensionality reduction method
#' @param add_margin the marginal plot (NULL, "density", "boxplot")
#' @param palette the color setting of RColorBrewer
#'
#' @return  a `ggplot` object.
#' @export
#'
#' @examples
#' # vis_identifier_dim_dist(expr_dataset, ids, grp_df, DR_method="PCA")
#' @export
vis_identifier_dim_dist <- function(dataset = NULL, ids = NULL, grp_df, samples = NULL,
                                    return.data = FALSE,
                                    DR_method = c("PCA", "UMAP", "tSNE"), add_margin = NULL,
                                    palette = "Set1") {
  stopifnot(ncol(grp_df) > 1)
  DR_method <- match.arg(DR_method)
  colnames(grp_df)[1] <- "sample"

  if (!is.null(dataset) && !is.null(ids)) {
    df <- tryCatch(
      {
        purrr::map(ids, function(x) {
          message("Querying data of identifier ", x, " from dataset ", dataset, " for DR")
          data <- if (dataset == "custom_feature_dataset") {
            query_custom_feature_value(x)
          } else {
            query_molecule_value(dataset, x)
          }
          data <- dplyr::tibble(
            sample = names(data),
            y = as.numeric(data)
          )
          colnames(data)[2] <- x
          data
        }) %>%
          purrr::reduce(dplyr::full_join, by = "sample")
      },
      error = function(e) {
        rlang::inform("access data failed, the message is provided below")
        rlang::warn(conditionMessage(e))
        NULL
      }
    )
    if (is.null(df)) {
      return(NULL)
    }

    df <- dplyr::inner_join(grp_df, df, by = "sample")
  } else {
    message("Directly use 'grp_df' for comparison analysis.")
    df <- grp_df
    ids <- colnames(grp_df)[-1:-2]
  }

  if (!is.null(samples)) {
    df <- dplyr::filter(df, .data$sample %in% samples)
  }

  ids_NAN <- colnames(df[, ids])[apply(df[, ids], 2, function(x) all(is.na(x)))]
  ids_SD0 <- colnames(df[, ids])[apply(df[, ids], 2, function(x) stats::sd(x) == 0)] %>% na.omit()
  ids_OK <- setdiff(ids, c(ids_NAN, ids_SD0))

  if (length(ids_OK) < 3) {
    stop("The number of valid ids is less than three. Please inspect the input ids and data_type(?query_pancan_value)")
  }

  if (return.data) {
    return(list(meta = grp_df, exp = df))
  }

  if (DR_method == "PCA") {
    pca_obj <- prcomp(df[, ids_OK], center = TRUE, scale = TRUE)
    res_dims <- pca_obj$x[, 1:2] %>%
      as.data.frame() %>%
      dplyr::rename("PC_1" = "PC1", "PC_2" = "PC2")
  } else if (DR_method == "tSNE") {
    set.seed(123)
    tsne_obj <- Rtsne::Rtsne(df[, ids_OK])
    res_dims <- tsne_obj$Y %>%
      as.data.frame() %>%
      dplyr::rename("tSNE_1" = "V1", "tSNE_2" = "V2")
  } else if (DR_method == "UMAP") {
    umap_obj <- umap::umap(df[, ids_OK])
    res_dims <- umap_obj$layout %>%
      as.data.frame() %>%
      dplyr::rename("UMAP_1" = "V1", "UMAP_2" = "V2")
  }

  res_dims <- cbind(df[1:2], res_dims)

  groups <- length(unique(res_dims[, colnames(grp_df)[2], drop = TRUE]))
  if (groups < 2) {
    stop("The number of valid group levels is less than two")
  }

  if (groups > 6) {
    color <- grDevices::hcl(
      h = seq(15, 375, length = groups + 1),
      l = 65, c = 100
    )[seq(groups)]
    shape <- rep(16, groups)
  } else {
    color <- RColorBrewer::brewer.pal(n = 6, name = palette)[seq(groups)]
    shape <- c(15:20)[seq(groups)]
  }

  p <- ggplot2::ggplot(
    res_dims,
    aes_string(colnames(res_dims)[3], colnames(res_dims)[4], color = colnames(res_dims)[2], shape = colnames(res_dims)[2])
  ) +
    ggplot2::geom_point() +
    ggplot2::stat_ellipse() +
    ggplot2::theme_classic(base_size = 20) +
    ggplot2::guides(
      color = guide_legend(title = NULL),
      shape = guide_legend(title = NULL)
    ) +
    ggplot2::theme(
      legend.background = element_blank(),
      legend.position = c(0, 0),
      legend.justification = c(0, 0)
    ) +
    ggplot2::scale_color_manual(values = color) +
    ggplot2::scale_shape_manual(values = shape)

  if (!is.null(add_margin)) {
    geom_type <- switch(add_margin,
      "density" = geom_density,
      "boxplot" = geom_boxplot,
      stop("Please choose one of density/boxplot marginal type")
    )

    p_right <- cowplot::axis_canvas(p, axis = "x") +
      geom_type(
        data = p$data, aes_string(x = colnames(p$data)[3], fill = colnames(grp_df)[2]),
        alpha = 0.8, linewidth = 0.3
      ) +
      ggplot2::scale_fill_manual(values = color)
    p_top <- cowplot::axis_canvas(p, axis = "y", coord_flip = TRUE) +
      geom_type(
        data = p$data, aes_string(x = colnames(p$data)[4], fill = colnames(grp_df)[2]),
        alpha = 0.8, linewidth = 0.3
      ) +
      coord_flip() +
      ggplot2::scale_fill_manual(values = color)
    p_tmp <- p %>%
      cowplot::insert_xaxis_grob(p_right, grid::unit(.2, "null"), position = "top") %>%
      cowplot::insert_yaxis_grob(p_top, grid::unit(.2, "null"), position = "right")
    p_tmp2 <- cowplot::ggdraw(p_tmp)
    p_tmp2$data <- p$data
    p <- p_tmp2
  }
  return(p)
}

Try the UCSCXenaShiny package in your browser

Any scripts or data that you put into this service are public.

UCSCXenaShiny documentation built on Aug. 8, 2025, 7:19 p.m.