R/residuals.vlm.q

Defines functions rqresidualsvlm residualsqrrvglm residualsvglm residualsvlm

Documented in residualsqrrvglm residualsvglm residualsvglm residualsvlm rqresidualsvlm

# These functions are
# Copyright (C) 1998-2024 T.W. Yee, University of Auckland.
# All rights reserved.
















residualsvlm  <-
  function(object,
           type = c("response", "deviance", "pearson",
                    "working")) {

  if (mode(type) != "character" && mode(type) != "name")
    type <- as.character(substitute(type))
  type <- match.arg(type,
                    c("response", "deviance", "pearson",
                      "working"))[1]

  na.act <- object@na.action
  object@na.action <- list()

  pooled.weight <- object@misc$pooled.weight
  if (is.null(pooled.weight))
    pooled.weight <- FALSE

  answer <-
  switch(type,
    working = if (pooled.weight) NULL else object@residuals,
    pearson = {
        if (pooled.weight) return(NULL)
        n <- object@misc$n
        M <- object@misc$M
        wz <- weights(object, type = "work")  # $weights
        if (!length(wz))
          wz <- if (M == 1) rep_len(1, n) else matrix(1, n, M)

        if (M == 1) {
          if (any(wz < 0))
            warning("some weights are negative. ",
                    "Their residual will be assigned NA")
          ans <- sqrt(c(wz)) * c(object@residuals)
          names(ans) <- names(object@residuals)
          ans
        } else {
          wz.sqrt <- matrix.power(wz, M = M, power = 0.5,
                                  fast = TRUE)
          ans <- mux22(wz.sqrt, object@residuals,
                       M = M, upper = FALSE)
          dim(ans) <- c(M, n)
          ans <- t(ans)
          dimnames(ans) <- dimnames(object@residuals)  # n x M
          ans
        }
    },
    deviance = {
      M <- object@misc$M
      if (M > 1)
        return(NULL)
      residualsvlm(object, type = "pearson")
    },
    response = object@residuals
  )

  if (length(answer) && length(na.act)) {
    napredict(na.act[[1]], answer)
  } else {
    answer
  }
}






residualsvglm  <-
  function(object,
           type = c("working", "pearson", "response",
                    "deviance", "ldot",
                    "stdres",
                    "rquantile"),
           matrix.arg = TRUE) {

  if (mode(type) != "character" && mode(type) != "name")
    type <- as.character(substitute(type))
  type <- match.arg(type,
          c("working", "pearson", "response", "deviance", "ldot",
            "stdres", "rquantile"))[1]

  na.act <- object@na.action
  object@na.action <- list()

  pooled.weight <- object@misc$pooled.weight
  if (is.null(pooled.weight))
    pooled.weight <- FALSE

  n <- object@misc$n
  M <- object@misc$M
  answer <-
  switch(type,
    working = if (pooled.weight) NULL else object@residuals,
    pearson = {
      if (pooled.weight) return(NULL)

      wz <- weights(object, type = "work")   # $weights

      if (M == 1) {
        if (any(wz < 0))
          warning("some weights are negative. ",
                  "Their residual will be assigned NA")
        ans <- sqrt(c(wz)) * c(object@residuals)
        names(ans) <- names(object@residuals)
        ans
      } else {
        wz.sqrt <- matrix.power(wz, M = M, power = 0.5,
                                fast = TRUE)
        ans <- mux22(wz.sqrt, object@residuals,
                     M = M, upper = FALSE)
        dim(ans) <- c(M, n)
        ans <- t(ans)
        dimnames(ans) <- dimnames(object@residuals)   # n x M
        ans
      }
    },
    deviance = {
      n <- object@misc$n

      y <- as.matrix(object@y)
      mu <- object@fitted.values


      w <- object@prior.weights
      if (!length(w))
        w <- rep_len(1, n)
      eta <- object@predictors

      dev.fn <- object@family@deviance  # May not 'exist'
      if (length(body(dev.fn)) > 0) {
        extra <- object@extra
        ans <- dev.fn(mu = mu,y = y, w = w,
                      residuals = TRUE, eta = eta, extra)
        if (length(ans)) {
          lob <- labels(object@residuals)
          if (is.list(lob)) {
            if (is.matrix(ans))
              dimnames(ans) <- lob else
              names(ans) <- lob[[1]]
          } else {
            names(ans) <- lob
          }
        }
        ans
      } else {
        NULL
      }
    },
    ldot = {
      n <- object@misc$n
      y <- as.matrix(object@y)
      mu <- object@fitted.values
      w <- object@prior.weights
      if (is.null(w))
          w <- rep_len(1, n)
      eta <- object@predictors
      if (!is.null(ll.fn <- object@family@loglikelihood)) {
        extra <- object@extra
        ans <- ll.fn(mu = mu,y = y,w = w,
                     residuals = TRUE, eta = eta, extra)
        if (!is.null(ans)) {
          ans <- c(ans)  # ldot residuals can only be a vector
          names(ans) <- labels(object@residuals)
        }
        ans
      } else {
        NULL
      }
    },  # ldot
    rquantile = {
      n <- object@misc$n
      y <- as.matrix(object@y)
      mu <- object@fitted.values
      w <- object@prior.weights
      if (is.null(w))
        w <- rep_len(1, n)
      eta <- object@predictors
      if (length(formals(object@family@rqresslot)) > 0) {
        extra <- object@extra
        object@family@rqresslot(y = y, w = w, eta = eta,
                                mu = mu, extra = extra)
      } else {
        NULL
      }
    },  # rquantile
    stdres = {



      if (is(object, "vgam"))
        stop("argument 'object' was estimated by backfitting",
             " and not really IRLS, hence hatvalues()",
             " is incorrect.")


      vfam <- object@family@vfamily
      if (!any(vfam %in% c("VGAMglm", "VGAMcategorical")))
        warning("standardized residuals implemented only for ",
                "'GLM' or 'VGAMcategorical' families; ",
                "this function may return nonsense.")
                
      y <- depvar(object)  # as.matrix(object@y)
      E1 <- fitted(object)  # @fitted
      if (any(vfam %in% "VGAMglm")) {
        varfun <- object@family@charfun
        vfun <- varfun(x = NULL, eta = predict(object),
                       extra = object@extra, varfun = TRUE)
        ans <- (y - E1) / sqrt(vfun * (1 - c(hatvalues(object))))
      } else {
        w <- weights(object, type = "prior")  # obj@prior.weights
        x <- y * c(w)
        E1 <- E1 * c(w)




        if (any(x < 0) || anyNA(x)) 
          stop("all entries of 'x' must be >= 0 and finite")
        if ((n <- sum(x)) == 0) 
          stop("at least one entry of 'x' must be positive")


        if (length(dim(x)) > 2L) 
          stop("invalid 'x'")
        if (length(x) == 1L) 
          stop("'x' must at least have 2 elements")


        sr <- rowSums(x)
        sc <- colSums(x)
        E <- outer(sr, sc, "*")/n
        v <- function(r, c, n) c * r * (n - r) * (n - c)/n^3
        V <- outer(sr, sc, v, n)
        dimnames(E) <- dimnames(x)





        ans <- stdres <- (x - E) / sqrt(V)
      }  # "GLM" or "VGAMcategorical"



      ans
    },  # stdres
    response = {
      y <- object@y

      mu <- fitted(object)

      true.mu <- object@misc$true.mu
      if (is.null(true.mu))
        true.mu <- TRUE

      ans <- if (true.mu) y - mu else NULL

      ans
    })  # switch


  if (length(answer)) {
    if (matrix.arg) {
      answer <- as.matrix(answer)
    } else {
      if (NCOL(answer) == 1) {
        names.ans <- dimnames(answer)[[1]]
        answer <- c(answer)
        names(answer) <- names.ans
      }
    }
  }

  if (length(answer) && length(na.act)) {
    napredict(na.act[[1]], answer)
  } else {
    answer
  }
}





residualsqrrvglm  <- function(object,
                              type = c("response"),
                              matrix.arg = TRUE) {


  if (mode(type) != "character" && mode(type) != "name")
    type <- as.character(substitute(type))
  type <- match.arg(type, c("response"))[1]

  na.act <- object@na.action
  object@na.action <- list()

  pooled.weight <- object@misc$pooled.weight
  if (is.null(pooled.weight))
    pooled.weight <- FALSE

  answer <-
  switch(type,
    working = if (pooled.weight) NULL else object@residuals,
    pearson = {
      stop("have not programmed pearson resids yet")
    },
    deviance = {
      stop("have not programmed deviance resids yet")
    },
    ldot = {
      stop("have not programmed ldot resids yet")
    },
    response = {
      y <- object@y
      mu <- fitted(object)

      true.mu <- object@misc$true.mu
      if (is.null(true.mu))
        true.mu <- TRUE

      ans <- if (true.mu) y - mu else NULL


      if (!matrix.arg && length(ans)) {
        if (ncol(ans) == 1) {
          names.ans <- dimnames(ans)[[1]]
          ans <- c(ans)
          names(ans) <- names.ans
          ans
        } else {
          warning("ncol(ans) is not 1")
          ans
        }
      } else {
        ans
      }
  })

  if (length(answer) && length(na.act)) {
    napredict(na.act[[1]], answer)
  } else {
    answer
  }
}






setMethod("residuals",  "vlm",
          function(object, ...)
          residualsvlm(object, ...))
setMethod("residuals",  "vglm",
          function(object, ...)
          residualsvglm(object, ...))
setMethod("residuals",  "vgam",
          function(object, ...)
          residualsvglm(object, ...))
setMethod("residuals",  "qrrvglm",
          function(object, ...)
          residualsqrrvglm(object, ...))

setMethod("resid",  "vlm",
          function(object, ...)
          residualsvlm(object, ...))
setMethod("resid",  "vglm",
          function(object, ...)
          residualsvglm(object, ...))
setMethod("resid",  "vgam",
          function(object, ...)
          residualsvglm(object, ...))
setMethod("resid",  "qrrvglm",
          function(object, ...)
          residualsqrrvglm(object, ...))





rqresidualsvlm  <-
  function(object, matrix.arg = TRUE, ...) {
    residualsvglm(object, type = "rquantile",
                  matrix.arg = matrix.arg)
}  # rqresidualsvlm 




  setGeneric("rqresid", function(object, ...)
             standardGeneric("rqresid"),
             package = "VGAM")
  setGeneric("rqresiduals", function(object, ...)
             standardGeneric("rqresiduals"),
             package = "VGAM")



setMethod("rqresid", "vlm",
          function(object, matrix.arg = TRUE, ...)
          rqresidualsvlm(object, matrix.arg = matrix.arg, ...))



setMethod("rqresiduals", "vlm",
          function(object, matrix.arg = TRUE, ...)
          rqresidualsvlm(object, matrix.arg = matrix.arg, ...))

Try the VGAM package in your browser

Any scripts or data that you put into this service are public.

VGAM documentation built on Sept. 18, 2024, 9:09 a.m.