demo/cqo.R

## Demo for constrained quadratic ordination (CQO; aka
## canonical Gaussian ordination).

library("VGAM")


data(hspider, package = "VGAM")
hspider[, 1:6] <- scale(hspider[, 1:6])  # standardize environmental vars


## Rank-1 model (unequal tolerances, deviance = 1176.0)

set.seed(123)
p1 <-
  cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi, Auloalbi,
            Pardlugu, Pardmont, Pardnigr, Pardpull, Trocterr, Zoraspin) ~
      WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux, 
      poissonff,  # Better, quasipoissonff but now withdrawn
      data = hspider, Bestof = 10, Crow1positive = FALSE,
      eq.tolerances = FALSE, I.tolerances = FALSE)

opar <- par(mfrow = c(2, 3))

lvplot(p1, lcol = 1:12, llwd = 2, llty = 1:12, y = TRUE, pch = 1:12,
       pcol = 1:12, las = 1, main = "Hunting spider data")

print(concoef(p1), digits = 3)
print(Coef(p1), digits = 3)

# trajectory plot
trplot(p1, which = 1:3, log = "xy", type = "b", lty = 1, lwd = 2,
       col = c("blue", "orange", "green"), label = TRUE) -> ii
legend(0.00005, 0.3, lwd = 2, lty = 1,
       col = c("blue", "orange", "green"),
       leg = paste(ii$species[, 1], ii$species[, 2], sep = " & "))

abline(a = 0, b = 1, lty = "dashed", col = "gray70")



## Rank-2 model (equal tolerances, deviance = 856.5)
set.seed(111)
r2 <-
  cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi, Auloalbi,
            Pardmont, Pardnigr, Pardpull, Trocterr) ~
      WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
      poissonff,  # Better, quasipoissonff but now withdrawn
      data = hspider, Rank = 2,
      Bestof = 10, I.tolerances = TRUE,
      eq.tolerances = TRUE, Crow1positive = c(FALSE, FALSE))
print(concoef(r2), digits = 3)
print(Coef(r2), digits = 3)

clr <- (1:(10+1))[-7]  # Omit yellow
adj <- c(-0.1, -0.1, -0.1, 1.1, 1.1, 1.1, -0.1, -0.1, -0.1, 1.1)
# With C arrows
lvplot(r2, label = TRUE, xlim = c(-2.8, 5.0), ellipse = FALSE, C = TRUE,
       Cadj = c(1.1, -0.1, 1.2, 1.1, 1.1, -0.1), adj = adj,
       las = 1, chull = TRUE, pch = "+", pcol = clr, sites = TRUE)

# With circular contours
lvplot(r2, label = TRUE, asp = 1, ellipse = TRUE, adj = adj,
       C = FALSE, Cadj = c(1.1, -0.1, 1.2, 1.1, 1.1, -0.1),
       las = 1, chull = TRUE, pch = "+", pcol = clr, sites = TRUE)

# With neither C arrows or circular contours
lvplot(r2, label = TRUE, asp = 1, ellipse = FALSE, adj = adj,
       C = FALSE, Cadj = c(1.1, -0.1, 1.2, 1.1, 1.1, -0.1),
       las = 1, chull = TRUE, pch = "+", pcol = clr, sites = TRUE)

# Perspective plot 
persp(r2, xlim = c(-5, 5), ylim = c(-3, 6), theta = 50, phi = 20)



## Gaussian logit regression. Not recommended actually
## because the number of sites is far too low.
## Optimal model has deviance = 154.6 with equal tolerances.

ybin <- with(hspider,
             0 + (cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,
                        Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
                        Trocterr, Zoraspin) > 0))  # Matrix of 0s and 1s
colnames(ybin) <- paste0(colnames(ybin), ".01")
hspider <- data.frame(hspider, ybin)  # Add new binary vars

set.seed(1312)
b1 <- cqo(ybin[, -c(1, 5)] ~ WaterCon + BareSand + FallTwig + CoveMoss +
          CoveHerb + ReflLux,  # Better, quasibinomial but now withdrawn:
          binomialff(multiple.responses = TRUE),  # Plain old binomialff
          Bestof = 4, I.tolerances = TRUE, 
          data = hspider, eq.tolerances = TRUE, Crow1positive = FALSE)
par(mfrow = c(1, 2))
lvplot(b1, type = "predictors", llwd = 2, las = 1, ylab = "logit mu",
       ylim = c(-20, 11), lcol = 1:10)
c1 <- Coef(b1)
cts <- paste0(c("Trocterr", "Pardmont", "Alopfabr", "Arctlute"), ".01")
text(c1@Optimum[1, cts], logitlink(c1@Maximum[cts]) + 1, cts)

round(t(Coef(b1, I.tolerances = FALSE)@C), dig = 3)

# On the probability scale
lvplot(b1, type = "fitted", llwd = 2, las = 1, llty = 1, lcol = 1:10,
       ylab = "Probability of presence", ylim = c(0, 1))

par(opar)

Try the VGAM package in your browser

Any scripts or data that you put into this service are public.

VGAM documentation built on Sept. 18, 2024, 9:09 a.m.