Nothing
################################################################################
#' Modify genome build
#'
#' Modify the physical position information of a data frame
#' when converting genome build using executable *liftOver*.
#'
#' @param info_snp A data frame with columns "chr" and "pos".
#' @param liftOver Path to liftOver executable. Binaries can be downloaded at
#' \url{https://hgdownload.cse.ucsc.edu/admin/exe/macOSX.x86_64/liftOver} for Mac
#' and at \url{https://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/liftOver}
#' for Linux.
#' @param from Genome build to convert from. Default is `hg18`.
#' @param to Genome build to convert to. Default is `hg19`.
#' @param check_reverse Whether to discard positions for which we cannot go back
#' to initial values by doing 'from -> to -> from'. Default is `TRUE`.
#' @param local_chain Local chain file (e.g. `hg18ToHg19.over.chain.gz`) to use
#' instead of downloading one from parameters `from` and `to` (the default).
#' You can download one such file from e.g.
#' \url{https://hgdownload.soe.ucsc.edu/goldenPath/hg18/liftOver/}.
#' Provide a vector of two when using `check_reverse`.
#' @param base_url From where to download the chain files. Default is
#' `"https://hgdownload.soe.ucsc.edu/goldenPath/"`. You can also try
#' replacing `https` by `http`, and/or `soe` by `cse`.
#'
#' @references
#' Hinrichs, Angela S., et al. "The UCSC genome browser database: update 2006."
#' Nucleic acids research 34.suppl_1 (2006): D590-D598.
#'
#' @return Input data frame `info_snp` with column "pos" in the new build.
#' @export
#'
snp_modifyBuild <- function(info_snp, liftOver,
from = "hg18", to = "hg19",
check_reverse = TRUE,
local_chain = NULL,
base_url = "https://hgdownload.soe.ucsc.edu/goldenPath/") {
if (!all(c("chr", "pos") %in% names(info_snp)))
stop2("Expecting variables 'chr' and 'pos' in input 'info_snp'.")
# Make sure liftOver is executable
liftOver <- make_executable(normalizePath(liftOver))
# Need BED UCSC file for liftOver
info_BED <- with(info_snp, data.frame(
# sub("^0", "", c("01", 1, 22, "X")) -> "1" "1" "22" "X"
chrom = paste0("chr", sub("^0", "", chr)),
start = pos - 1L, end = pos,
id = seq_along(pos)))
BED <- tempfile(fileext = ".BED")
bigreadr::fwrite2(stats::na.omit(info_BED),
BED, col.names = FALSE, sep = " ", scipen = 50)
# Need chain file
if (is.null(local_chain)) {
url <- paste0(base_url, from, "/liftOver/",
from, "To", tools::toTitleCase(to), ".over.chain.gz")
chain <- tempfile(fileext = ".over.chain.gz")
utils::download.file(url, destfile = chain, quiet = TRUE)
} else {
chain <- local_chain[[1]]
assert_exist(chain)
}
# Run liftOver (usage: liftOver oldFile map.chain newFile unMapped)
lifted <- tempfile(fileext = ".BED")
system2(liftOver, c(BED, chain, lifted, tempfile(fileext = ".txt")))
# Read the ones lifter + some QC
new_pos <- bigreadr::fread2(lifted, nThread = 1)
is_bad <- vctrs::vec_duplicate_detect(new_pos$V4) |
(new_pos$V1 != info_BED$chrom[new_pos$V4])
new_pos <- new_pos[which(!is_bad), ]
pos0 <- info_snp$pos
info_snp$pos <- NA_integer_
info_snp$pos[new_pos$V4] <- new_pos$V3
if (check_reverse) {
pos2 <- suppressMessages(
Recall(info_snp, liftOver, from = to, to = from, check_reverse = FALSE,
local_chain = local_chain[[2]], base_url = base_url)$pos
)
info_snp$pos[pos2 != pos0] <- NA_integer_
}
message2("%d variants have not been mapped.", sum(is.na(info_snp$pos)))
info_snp
}
################################################################################
#' Interpolate to genetic positions
#'
#' Use genetic maps available at
#' \url{https://github.com/joepickrell/1000-genomes-genetic-maps/}
#' to interpolate physical positions (in bp) to genetic positions (in cM).
#'
#' @inheritParams bigsnpr-package
#' @param dir Directory where to download and decompress files.
#' Default is `tempdir()`. Directly use *uncompressed* files there if already
#' present. You can use [R.utils::gunzip()] to uncompress local files.
#' @param rsid If providing rsIDs, the matching is performed using those
#' (instead of positions) and variants not matched are interpolated using
#' spline interpolation of variants that have been matched.
#' @param type Whether to use the genetic maps interpolated from "OMNI"
#' (the default), or from "hapmap".
#'
#' @return The new vector of genetic positions.
#' @export
#'
snp_asGeneticPos <- function(infos.chr, infos.pos, dir = tempdir(), ncores = 1,
rsid = NULL, type = c("OMNI", "hapmap")) {
type <- match.arg(type)
path <- c(OMNI = "interpolated_OMNI",
hapmap = "interpolated_from_hapmap")[type]
assert_package("R.utils")
assert_lengths(infos.chr, infos.pos)
if (!is.null(rsid)) assert_lengths(rsid, infos.pos)
snp_split(infos.chr, function(ind.chr, pos, dir, rsid) {
chr <- attr(ind.chr, "chr")
basename <- paste0("chr", chr, `if`(type == "OMNI", ".OMNI", ""),
".interpolated_genetic_map")
mapfile <- file.path(dir, basename)
if (!file.exists(mapfile)) {
url <- paste0("https://github.com/joepickrell/1000-genomes-genetic-maps/",
"raw/master/", path, "/", basename, ".gz")
gzfile <- paste0(mapfile, ".gz")
utils::download.file(url, destfile = gzfile, quiet = TRUE)
R.utils::gunzip(gzfile)
}
map.chr <- bigreadr::fread2(mapfile, showProgress = FALSE, nThread = 1)
if (is.null(rsid)) {
ind <- bigutilsr::knn_parallel(as.matrix(map.chr$V2), as.matrix(pos[ind.chr]),
k = 1, ncores = 1)$nn.idx
new_pos <- map.chr$V3[ind]
} else {
ind <- match(rsid[ind.chr], map.chr$V1)
new_pos <- map.chr$V3[ind]
indNA <- which(is.na(ind))
if (length(indNA) > 0) {
pos.chr <- pos[ind.chr]
new_pos[indNA] <- suppressWarnings(
stats::spline(pos.chr, new_pos, xout = pos.chr[indNA], method = "hyman")$y)
}
}
new_pos
}, combine = "c", pos = infos.pos, dir = dir, rsid = rsid, ncores = ncores)
}
################################################################################
#' Download a genetic map
#'
#' @param type Which genetic map to download.
#' @param dir Directory where to download and decompress files.
#' @inheritParams bigsnpr-package
#'
#' @return A data frame with 3 columns: `chr`, `pos`, and `pos_cM`.
#' @export
#'
#' @details
#' The hg19 genetic maps are downloaded from
#' \url{https://github.com/joepickrell/1000-genomes-genetic-maps/}
#' while the hg38 one is downloaded from
#' `https://alkesgroup.broadinstitute.org/Eagle/downloads/tables/`.
#'
#' @rdname snp_asGeneticPos2
#'
download_genetic_map <- function(type = c("hg19_OMNI", "hg19_hapmap", "hg38_price"),
dir, ncores = 1) {
assert_package("R.utils")
type <- match.arg(type)
if (grepl("hg19", type)) {
path <- c(hg19_OMNI = "interpolated_OMNI",
hg19_hapmap = "interpolated_from_hapmap")[type]
bigparallelr::register_parallel(ncores)
foreach(chr = 1:22, .combine = "rbind") %dopar% {
basename <- paste0("chr", chr, `if`(type == "hg19_OMNI", ".OMNI", ""),
".interpolated_genetic_map")
mapfile <- file.path(dir, basename)
if (!file.exists(mapfile)) {
url <- paste0("https://github.com/joepickrell/1000-genomes-genetic-maps/",
"raw/master/", path, "/", basename, ".gz")
gzfile <- paste0(mapfile, ".gz")
utils::download.file(url, destfile = gzfile, quiet = TRUE)
R.utils::gunzip(gzfile)
}
cbind(chr = chr,
bigreadr::fread2(mapfile, showProgress = FALSE, nThread = 1,
select = 2:3, col.names = c("pos", "pos_cM")))
}
} else if (type == "hg38_price") {
mapfile <- file.path(dir, "genetic_map_hg38_withX.txt")
if (!file.exists(mapfile)) {
url <- "https://storage.googleapis.com/broad-alkesgroup-public/Eagle/downloads/tables/genetic_map_hg38_withX.txt.gz"
gzfile <- paste0(mapfile, ".gz")
utils::download.file(url, destfile = gzfile, quiet = TRUE)
R.utils::gunzip(gzfile)
}
bigreadr::fread2(mapfile, showProgress = FALSE, nThread = ncores,
select = c(1, 2, 4), col.names = c("chr", "pos", "pos_cM"))
}
}
################################################################################
#' Interpolate to genetic positions
#'
#' This function uses linear interpolation, whereas `snp_asGeneticPos()` uses
#' nearest neighbors.
#'
#' @inheritParams bigsnpr-package
#' @param genetic_map A data frame with 3 columns: `chr`, `pos`, and `pos_cM`.
#' You can get it using [download_genetic_map()].
#'
#' @return The new vector of genetic positions.
#' @export
#'
snp_asGeneticPos2 <- function(infos.chr, infos.pos, genetic_map) {
assert_lengths(infos.chr, infos.pos)
assert_df_with_names(genetic_map, c("chr", "pos", "pos_cM"))
genetic_map <- split(genetic_map, genetic_map$chr)
new_pos <- rep(NA_real_, length(infos.chr))
ind_chr <- split(seq_along(infos.chr), infos.chr)
for (chr in names(ind_chr)) {
ind.chr <- ind_chr[[chr]]
ref <- genetic_map[[chr]]
if (is.null(ref)) stop2("Chromosome '%s' not found in `genetic_map`.", chr)
keep_unique <- !duplicated(ref$pos)
new_pos[ind.chr] <- stats::approx(
x = ref$pos[keep_unique], y = ref$pos_cM[keep_unique],
xout = infos.pos[ind.chr], rule = 2)$y
}
new_pos
}
################################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.