R/Anova.R

Defines functions vcov.clmmAnova coef.clmmAnova Anova.clmm model.matrix.clmAnova vcov.clmAnova coef.clmAnova Anova.clm Anova.svycoxph vcov.svyolr coef.svyolr assignVector.svyolr Anova_II_LR_coxme Anova.coxme Anova.rlm Anova.svyglm Anova_III_lme Anova_II_lme Anova.lme has_intercept.lme Anova_III_mer Anova_II_mer Anova.mer Anova.merMod Anova_III_default Anova_II_default assignVector.default assignVector Anova.default Anova_Wald_survreg Anova_III_LR_survreg Anova_II_LR_survreg Anova.survreg logLik.survreg alias.survreg Anova_III_LR_coxph Anova_II_LR_coxph Anova.coxph logLik.coxph alias.coxph df.residual.coxph Manova.mlm Manova Anova.manova as.data.frame.univaov print.univaov print.summary.Anova.mlm print.Anova.mlm Anova_II_mlm Anova_III_mlm Anova.mlm Anova_II_F_glm Anova_II_LR_glm Anova_III_F_glm Anova_III_LR_glm Anova.glm Anova_III_lm Anova_II_lm Anova.aov Anova.lm Anova lm2glm relatives ConjComp

Documented in Anova Anova.aov Anova.clm Anova.clmm Anova.coxme Anova.coxph Anova.default Anova.glm Anova.lm Anova.lme Anova.manova Anova.mer Anova.merMod Anova.mlm Anova.rlm Anova.svycoxph Anova.svyglm as.data.frame.univaov Manova Manova.mlm print.Anova.mlm print.summary.Anova.mlm print.univaov

#-------------------------------------------------------------------------------
# Revision history:
# 2009-01-05: bug fix in Anova_II_lm(). J. Fox
# 2009-01-16: Cox models with clusters now handled. J. Fox
# 2009-09-16: reworked glm and lm methods to handle aliased parameters. J. Fox
# 2009-09-30: renamed "Anova" to "Analysis of Deviance" in output for some methods. J. Fox
# 2009-12-22: modified Anova.mlm() to handle a user-supplied within-subject model matrix. J. Fox
# 2009-12-28: named the components of P in Anova_III_mlm(). John
# 2010-01-01: Anova_II_mlm() now hands off (again) to Anova_III_mlm() when there
#             is only an intercept in the between-subjects model
# 2010-02-17: Fixed bug that caused some models with aliased coefficients to fail. J. Fox
# 2010-06-14: added wcrossprod and allow use of observation weights in Anova.mlm()
# 2010-06-28: Fixed Anova() tables for coxph and survreg models 
#             (failed because of changes in survival package.
# 2011-01-21: Added functions for mixed models. J. Fox
# 2011-01-25: Fixed Anova.polr() and Anova.multinom() to work with models with only one term. J. Fox
# 2011-05-19: local fixef() to avoid nlme/lme4 issues. J. Fox
# 2011-05-11: changed order of columns in ANOVA tables for mixed models. J. Fox
# 2011-11-27: added Anova.svyglm(). J. Fox
# 2011-12-31: fixed bug in Anova.II(and III).F.glm() when na.exclude used. J. Fox
# 2012-02-28: added test.statistic argument to Anova.mer(). J.Fox
# 2012-03-02: fixed test abbreviation of test.statistic argument to Anova.default()
#             called by other Anova() methods. J. Fox
# 2013-06-17: modified summary.Anova.mlm(), introduced print.summary.Anova.mlm(),
#             adapting code contributed by Gabriel Baud-Bovy. J. Fox
# 2013-06-20: added Anova.merMod() method. J. Fox
# 2013-06-22: tweaks to local fixef(). J. Fox
# 2013-06-22: test argument uniformly uses "Chisq" rather than "chisq". J. Fox
# 2013-08-19: replaced calls to print.anova(). J. Fox
# 2014-08-17: added calls to requireNamespace() and :: where needed (doesn't work for pbkrtest). J. Fox
# 2014-08-18: fixed bugs in Anova.survreg() for types II, III LR tests and Wald tests. J. Fox
# 2014-09-23: added Anova.rlm(). J. Fox
# 2014-10-10: removed MASS:: from calls to polr(). John
# 2014-12-18: check that residual df and SS are nonzero in Anova.lm(). John
# 2015-01-27: vcovAdj() and methods now imported from pbkrtest. John
# 2015-02-18: force evaluation of vcov. when it's a function. John
# 2015-04-30: don't allow error.estimate="dispersion" for F-tests in binomial
#             and Poission GLMs. John
# 2015-08-29: fixed Anova() for coxph models with clusters. John
# 2015-09-04: added support for coxme models. John
# 2015-09-11: modified Anova.default() to work with vglm objects from VGAM. John
# 2015-09-15: fixed Anova.default() so that F-tests work again. John
# 2015-11-13: modify Anova.coxph() to take account of method/ties argument. John
# 2016-06-03: added SSP and SSPE args to print.summary.Anova.mlm(). John
# 2016-06-25: added code to optionally print univariate ANOVAs for a mlm. John
# 2017-02-16: replace polr() calls with MASS::polr(), multinom() with nnet::multinom(),
#             vcovAdj() with pbkrtest::vcovAdj(). John
# 2017-03-08: fixed bug in print.summary.Anova.mlm(). John
# 2017-11-07: added complete=FALSE to vcov() and vcov.() calls. John
# 2017-11-24: small improvements to output. John
# 2017-11-29: further fixed to vcov() and vcov.() calls. John
# 2018-01-15: Anova.multinom() now works with response matrix. JF
# 2018-02-11: If there are aliased coefs in lm object, treat as GLM. JF
# 2018-04-04: pass ... arguments through print() methods. Follows comments by Egor Katkov. JF
# 2019-10-16: modify Anova.coxph() and Anova.default()  for coxph() models with strata (or clusters)
#             (following problem reported by Susan Galloway Hilsenbeck). JF
# 2019-02-17: fix Anova.lme() to work with models without intercepts (to fix bug reported by Benjamin Tyner). JF
# 2020-04-01: fix Anova.coxph() to work with weights (to fix bug reported by Daniel Morillo Cuadrado)
# 2020-05-27: tweak to handling of Anova.coxph Wald tests. JF
# 2020-12-07: Standardize handling of vcov. arg
# 2020-12-18: fix Anova.lme() so that it handles missing factor levels. JF
# 2020-12-18: make assignVector() generic; add default and svyolr methods;
#             add unexported svyolr methods for coef() and vcov();
#             all this to make Anova() and linearHypothesis() work with svyolr. JF
# 2021-04-07: fix Anova.lm() so that SSs are computed when vcov. not specified. JF
# 2021-06-12: vcov. arg. now works for mer models.
# 2021-06-14: further fixes to vcov. arg for Anova.mer(). JF
#             introduced vcov. arg to Anova.glm(). JF
# 2021-06-16: Fix imatrix arg to Anova.mlm() (contribution of Benedikt Langenberg).JF
# 2021-06-19: make sure that calls to anova() for survival::survreg() models return "anova" objects. JF
# 2022-01-17,18: handle singularities better in Anova.mlm() (suggestion of Marius Barth)
# 2922-04-24: introduce new error.df argument for linearHypothesis.default(). JF
# 2022-06-07: Added Anova.svycoxph(). JF
# 2022-07-22: Fix bug in Anova.survreg() for Wald tests (reported by Megan Taylor Jones). JF
# 2022-07-22: Make Anova.lm() more robust when there are aliased coefficients (following report by Taiwo Fagbohungbe). JF
# 2022-07-27: Tweaked the last fix so the tolerance for deciding rank is the same for the lm model and the temporary glm model. SW
# 2023-10-03: Suppress LR tests for "coxph" models using the tt argument (following bug report by Ken Beath). JF
# 2024-05-08: Added Anova.clm() and Anova.clmm() methods (and supporting functions) (following report by Karl Ove Hufthammer). JF
# 2024-05-14: Rename internal functions to replace .s with _s. JF
# 2024-09-19: model.matrix.lme() now handles contrasts and xlev correctly, fixing a bug in Anova.lme() (reported by Ben Bolker). JF
#-------------------------------------------------------------------------------

# Type II and III tests for linear, generalized linear, and other models (J. Fox)

ConjComp <- function(X, Z = diag( nrow(X)), ip = diag(nrow(X))) {
  # This function by Georges Monette
  # finds the conjugate complement of the proj of X in span(Z) wrt
  #    inner product ip
  # - assumes Z is of full column rank
  # - projects X conjugately wrt ip into span Z
  xq <- qr(t(Z) %*% ip %*% X)
  if (xq$rank == 0) return(Z)
  Z %*% qr.Q(xq, complete = TRUE) [ ,-(1:xq$rank)] 
}

relatives <- function(term, names, factors){
  is.relative <- function(term1, term2) {
    all(!(factors[,term1]&(!factors[,term2])))
  }
  if(length(names) == 1) return(NULL)
  which.term <- which(term==names)
  (1:length(names))[-which.term][sapply(names[-which.term], 
                                        function(term2) is.relative(term, term2))]
}

lm2glm <- function(mod){
  Data <- getModelData(mod)
  wts <- weights(mod)
  Data$..wts.. <- if (is.null(wts)) rep(1, nrow(Data)) else wts
  form <- formula(mod)
  eps <- 1000 * (if(is.null(mod$call$tol)) 1e-7 else mod$call$tol)
  glm(form, weights=..wts.., data=Data, control=list(epsilon=eps))
}

globalVariables("..wts..")

Anova <- function(mod, ...){
  UseMethod("Anova", mod)
}

# linear models

Anova.lm <- function(mod, error, type=c("II","III", 2, 3), 
                     white.adjust=c(FALSE, TRUE, "hc3", "hc0", "hc1", "hc2", "hc4"),
                     vcov.=NULL, singular.ok, ...){
  if (!is.null(vcov.)) message("Coefficient covariances computed by ", deparse(substitute(vcov.)))
  if (!missing(white.adjust)) message("Coefficient covariances computed by hccm()")
  if (df.residual(mod) == 0) stop("residual df = 0")
  if (deviance(mod) < sqrt(.Machine$double.eps)) stop("residual sum of squares is 0 (within rounding error)")
  type <- as.character(type)
  white.adjust <- as.character(white.adjust)
  type <- match.arg(type)
  white.adjust <- match.arg(white.adjust)
  if (missing(singular.ok)){
    singular.ok <- type == "2" || type == "II"
  }
  if (has_intercept(mod) && length(coef(mod)) == 1 
      && (type == "2" || type == "II")) {
    type <- "III"
    warning("the model contains only an intercept: Type III test substituted")
  }
  if (any(is.na(coef(mod))) && singular.ok){
    if ((white.adjust != "FALSE") || (!is.null(vcov.)))
      stop("non-standard coefficient covariance matrix\n  may not be used for model with aliased coefficients")
    message("Note: model has aliased coefficients\n      sums of squares computed by model comparison")
    result <- Anova(lm2glm(mod), type=type, singular.ok=TRUE, test.statistic="F", ...)
    heading <- attributes(result)$heading
    if (type == "2") type <- "II"
    if (type == "3") type <- "III"
    attr(result, "heading") <- c(paste("Anova Table (Type", type, "tests)"), "", heading[2])
    return(result)
  }
  if (white.adjust != "FALSE"){
    if (white.adjust == "TRUE") white.adjust <- "hc3" 
    return(Anova.default(mod, type=type, vcov.=hccm(mod, type=white.adjust), test.statistic="F", 
                         singular.ok=singular.ok, ...))
  }
  else if (!is.null(vcov.)) return(Anova.default(mod, type=type, vcov.=vcov., test.statistic="F", 
                                                 singular.ok=singular.ok, ...))
  switch(type,
         II=Anova_II_lm(mod, error, singular.ok=singular.ok, ...),
         III=Anova_III_lm(mod, error, singular.ok=singular.ok, ...),
         "2"=Anova_II_lm(mod, error, singular.ok=singular.ok, ...),
         "3"=Anova_III_lm(mod, error, singular.ok=singular.ok,...))
}

Anova.aov <- function(mod, ...){
  class(mod) <- "lm"
  Anova.lm(mod, ...)
}

Anova_II_lm <- function(mod, error, singular.ok=TRUE, ...){
  if (!missing(error)){
    sumry <- summary(error, corr=FALSE)
    s2 <- sumry$sigma^2
    error.df <- error$df.residual
    error.SS <- s2*error.df
  }
  SS.term <- function(term){
    which.term <- which(term == names)
    subs.term <- which(assign == which.term)
    relatives <- relatives(term, names, fac)
    subs.relatives <- NULL
    for (relative in relatives) 
      subs.relatives <- c(subs.relatives, which(assign == relative))
    hyp.matrix.1 <- I.p[subs.relatives,,drop=FALSE]
    hyp.matrix.1 <- hyp.matrix.1[, not.aliased, drop=FALSE]
    hyp.matrix.2 <- I.p[c(subs.relatives,subs.term),,drop=FALSE]
    hyp.matrix.2 <- hyp.matrix.2[, not.aliased, drop=FALSE]
    hyp.matrix.term <- if (nrow(hyp.matrix.1) == 0) hyp.matrix.2
    else t(ConjComp(t(hyp.matrix.1), t(hyp.matrix.2), vcov(mod, complete=FALSE)))
    hyp.matrix.term <- hyp.matrix.term[!apply(hyp.matrix.term, 1, 
                                              function(x) all(x == 0)), , drop=FALSE]
    if (nrow(hyp.matrix.term) == 0)
      return(c(SS=NA, df=0))
    lh <- linearHypothesis(mod, hyp.matrix.term, 
                           singular.ok=singular.ok, ...)
    abs(c(SS=lh$"Sum of Sq"[2], df=lh$Df[2]))
  }
  not.aliased <- !is.na(coef(mod))
  if (!singular.ok && !all(not.aliased))
    stop("there are aliased coefficients in the model")
  fac <- attr(terms(mod), "factors")
  intercept <- has_intercept(mod)
  I.p <- diag(length(coefficients(mod)))
  assign <- mod$assign
  assign[!not.aliased] <- NA
  names <- term.names(mod)
  if (intercept) names <-names[-1]
  n.terms <- length(names)
  p <- df <- f <- SS <- rep(0, n.terms + 1)
  sumry <- summary(mod, corr = FALSE)
  SS[n.terms + 1] <- if (missing(error)) sumry$sigma^2*mod$df.residual 
  else error.SS   
  df[n.terms + 1] <- if (missing(error)) mod$df.residual else error.df
  p[n.terms + 1] <- f[n.terms + 1] <- NA
  for (i in 1:n.terms){
    ss <- SS.term(names[i])
    SS[i] <- ss["SS"]
    df[i] <- ss["df"]
    f[i] <- df[n.terms+1]*SS[i]/(df[i]*SS[n.terms + 1])
    p[i] <- pf(f[i], df[i], df[n.terms + 1], lower.tail = FALSE)
  }    
  result <- data.frame(SS, df, f, p)
  row.names(result) <- c(names,"Residuals")
  names(result) <- c("Sum Sq", "Df", "F value", "Pr(>F)")
  class(result) <- c("anova", "data.frame")
  attr(result, "heading") <- c("Anova Table (Type II tests)\n", 
                               paste("Response:", responseName(mod)))
  result
}

# type III

Anova_III_lm <- function(mod, error, singular.ok=FALSE, ...){
  if (!missing(error)){
    error.df <- df.residual(error)
    error.SS <- deviance(error)
  }
  else {
    error.df <- df.residual(mod)
    error.SS <- deviance(mod)
  }
  intercept <- has_intercept(mod)
  I.p <- diag(length(coefficients(mod)))
  Source <- term.names(mod)
  n.terms <- length(Source)
  p <- df <- f <- SS <- rep(0, n.terms + 1)
  assign <- mod$assign
  not.aliased <- !is.na(coef(mod))
  if (!singular.ok && !all(not.aliased))
    stop("there are aliased coefficients in the model")
  indices <- 1:n.terms
  for (term in indices){
    subs <- which(assign == term - intercept)
    hyp.matrix <- I.p[subs,,drop=FALSE]
    hyp.matrix <- hyp.matrix[, not.aliased, drop=FALSE]
    hyp.matrix <- hyp.matrix[!apply(hyp.matrix, 1, function(x) all(x == 0)), , drop=FALSE]
    if (nrow(hyp.matrix) == 0){
      SS[term] <- NA
      df[term] <- 0
      f[term] <- NA
      p[term] <- NA
    }
    else {
      test <- linearHypothesis(mod, hyp.matrix, singular.ok=singular.ok, ...)
      SS[term] <- test$"Sum of Sq"[2]
      df[term] <- test$"Df"[2]
    }
  }
  index.error <- n.terms + 1
  Source[index.error] <- "Residuals"
  SS[index.error] <- error.SS
  df[index.error] <- error.df
  f[indices] <- (SS[indices]/df[indices])/(error.SS/error.df)
  p[indices] <- pf(f[indices], df[indices], error.df, lower.tail=FALSE)
  p[index.error] <- f[index.error] <- NA
  result <- data.frame(SS, df, f, p)
  row.names(result) <- Source
  names(result) <- c("Sum Sq", "Df", "F value", "Pr(>F)")
  class(result) <- c("anova", "data.frame")
  attr(result, "heading") <- c("Anova Table (Type III tests)\n", paste("Response:", responseName(mod)))
  result
}

# generalized linear models

Anova.glm <- function(mod, type=c("II","III", 2, 3), test.statistic=c("LR", "Wald", "F"),
                      error, error.estimate=c("pearson", "dispersion", "deviance"), 
                      vcov.=vcov(mod, complete=TRUE), singular.ok, ...){
  type <- as.character(type)
  type <- match.arg(type)
  test.statistic <- match.arg(test.statistic)
  error.estimate <- match.arg(error.estimate)
  if (!missing(vcov.)) {
    if (test.statistic != "Wald"){
      warning(paste0('test.statistic="', test.statistic,
                     '"; vcov. argument ignored'))
    } else {
      message("Coefficient covariances computed by ", deparse(substitute(vcov.)))
    }
  }
  vcov. <- getVcov(vcov., mod)
  if (has_intercept(mod) && length(coef(mod)) == 1 
      && (type == "2" || type == "II")) {
    type <- "III"
    warning("the model contains only an intercept: Type III test substituted")
  }
  if (missing(singular.ok)){
    singular.ok <- type == "2" || type == "II"
  }
  switch(type,
         II=switch(test.statistic,
                   LR=Anova_II_LR_glm(mod, singular.ok=singular.ok),
                   Wald=Anova.default(mod, type="II", singular.ok=singular.ok, vcov.=vcov.),
                   F=Anova_II_F_glm(mod, error, error.estimate, singular.ok=singular.ok)),
         III=switch(test.statistic,
                    LR=Anova_III_LR_glm(mod, singular.ok=singular.ok),
                    Wald=Anova.default(mod, type="III", singular.ok=singular.ok, vcov.=vcov.),
                    F=Anova_III_F_glm(mod, error, error.estimate, singular.ok=singular.ok)),
         "2"=switch(test.statistic,
                    LR=Anova_II_LR_glm(mod, singular.ok=singular.ok),
                    Wald=Anova.default(mod, type="II", singular.ok=singular.ok, vcov.=vcov.),
                    F=Anova_II_F_glm(mod, error, error.estimate, singular.ok=singular.ok)),
         "3"=switch(test.statistic,
                    LR=Anova_III_LR_glm(mod, singular.ok=singular.ok),
                    Wald=Anova.default(mod, type="III", singular.ok=singular.ok, vcov.=vcov.),
                    F=Anova_III_F_glm(mod, error, error.estimate, singular.ok=singular.ok)))
}


# type III

# LR test

Anova_III_LR_glm <- function(mod, singular.ok=FALSE, ...){
  if (!singular.ok && any(is.na(coef(mod))))
    stop("there are aliased coefficients in the model")
  Source <- if (has_intercept(mod)) term.names(mod)[-1]
  else term.names(mod)
  n.terms <- length(Source)
  p <- df <- LR <- rep(0, n.terms)
  dispersion <- summary(mod, corr = FALSE)$dispersion
  deviance <- deviance(mod)/dispersion
  for (term in 1:n.terms){
    mod.1 <- drop1(mod, scope=eval(parse(text=paste("~",Source[term]))))
    df[term] <- mod.1$Df[2]
    LR[term] <- if (df[term] == 0) NA else (mod.1$Deviance[2]/dispersion)-deviance
    p[term] <- pchisq(LR[term], df[term], lower.tail = FALSE)
  }
  result <- data.frame(LR, df, p)
  row.names(result) <- Source
  names(result) <- c("LR Chisq", "Df", "Pr(>Chisq)")
  class(result) <- c("anova","data.frame")
  attr(result, "heading") <- c("Analysis of Deviance Table (Type III tests)\n", paste("Response:", responseName(mod)))
  result
}

# F test

Anova_III_F_glm <- function(mod, error, error.estimate, singular.ok=FALSE, ...){
  if (!singular.ok && any(is.na(coef(mod))))
    stop("there are aliased coefficients in the model")
  fam <- family(mod)$family
  if ((fam == "binomial" || fam == "poisson") && error.estimate == "dispersion"){
    warning("dispersion parameter estimated from the Pearson residuals, not taken as 1")
    error.estimate <- "pearson"
  }
  if (missing(error)) error <- mod
  df.res <- df.residual(error)
  error.SS <- switch(error.estimate,
                     pearson=sum(residuals(error, "pearson")^2, na.rm=TRUE),
                     dispersion=df.res*summary(error, corr = FALSE)$dispersion,
                     deviance=deviance(error))
  Source <- if (has_intercept(mod)) term.names(mod)[-1]
  else term.names(mod)
  n.terms <- length(Source)
  p <- df <- f <- SS <-rep(0, n.terms+1)
  f[n.terms+1] <- p[n.terms+1] <- NA
  df[n.terms+1] <- df.res
  SS[n.terms+1] <- error.SS
  dispersion <- error.SS/df.res
  deviance <- deviance(mod)
  for (term in 1:n.terms){
    mod.1 <- drop1(mod, scope=eval(parse(text=paste("~",Source[term]))))
    df[term] <- mod.1$Df[2]
    SS[term] <- mod.1$Deviance[2] - deviance
    f[term] <- if (df[term] == 0) NA else (SS[term]/df[term])/dispersion
    p[term] <- pf(f[term], df[term], df.res, lower.tail = FALSE)
  }
  result <- data.frame(SS, df, f, p)
  row.names(result) <- c(Source, "Residuals")
  names(result) <- c("Sum Sq", "Df", "F values", "Pr(>F)")
  class(result) <- c("anova","data.frame")
  attr(result, "heading") <- c("Analysis of Deviance Table (Type III tests)\n", 
                               paste("Response:", responseName(mod)), 
                               paste("Error estimate based on",
                                     switch(error.estimate, 
                                            pearson="Pearson residuals", dispersion="estimated dispersion", 
                                            deviance="deviance"), "\n"))
  result
}

# type II

# LR test

Anova_II_LR_glm <- function(mod, singular.ok=TRUE, ...){
  if (!singular.ok && any(is.na(coef(mod))))
    stop("there are aliased coefficients in the model")
  # (some code adapted from drop1.glm)
  which.nms <- function(name) which(asgn == which(names == name))
  fac <- attr(terms(mod), "factors")
  names <- if (has_intercept(mod)) term.names(mod)[-1]
  else term.names(mod)
  n.terms <- length(names)
  X <- model.matrix(mod)
  y <- mod$y
  if (is.null(y)) y <- model.response(model.frame(mod), "numeric")
  wt <- mod$prior.weights
  if (is.null(wt)) wt <- rep(1, length(y))
  asgn <- attr(X, 'assign')
  df <- p <- LR <- rep(0, n.terms)
  dispersion <- summary(mod, corr = FALSE)$dispersion
  for (term in 1:n.terms){
    rels <- names[relatives(names[term], names, fac)]
    exclude.1 <- as.vector(unlist(sapply(c(names[term], rels), which.nms)))
    mod.1 <- glm.fit(X[, -exclude.1, drop = FALSE], y, wt, offset = mod$offset, 
                     family = mod$family, control = mod$control)
    dev.1 <- deviance(mod.1)
    mod.2 <- if (length(rels) == 0) mod
    else {
      exclude.2 <- as.vector(unlist(sapply(rels, which.nms)))
      glm.fit(X[, -exclude.2, drop = FALSE], y, wt, offset = mod$offset, 
              family = mod$family, control = mod$control)
    }
    dev.2 <- deviance(mod.2)
    df[term] <- df.residual(mod.1) - df.residual(mod.2)
    if (df[term] == 0) LR[term] <- p[term] <- NA
    else {
      LR[term] <- (dev.1 - dev.2)/dispersion
      p[term] <- pchisq(LR[term], df[term], lower.tail=FALSE)
    }
  }
  result <- data.frame(LR, df, p)
  row.names(result) <- names
  names(result) <- c("LR Chisq", "Df", "Pr(>Chisq)")
  class(result) <- c("anova", "data.frame")
  attr(result, "heading") <- 
    c("Analysis of Deviance Table (Type II tests)\n", paste("Response:", responseName(mod)))
  result
}


# F test

Anova_II_F_glm <- function(mod, error, error.estimate, singular.ok=TRUE, ...){
  # (some code adapted from drop1.glm)
  if (!singular.ok && any(is.na(coef(mod))))
    stop("there are aliased coefficients in the model")
  fam <- family(mod)$family
  if ((fam == "binomial" || fam == "poisson") && error.estimate == "dispersion"){
    warning("dispersion parameter estimated from the Pearson residuals, not taken as 1")
    error.estimate <- "pearson"
  }
  which.nms <- function(name) which(asgn == which(names == name))
  if (missing(error)) error <- mod
  df.res <- df.residual(error)
  error.SS <- switch(error.estimate,
                     pearson = sum(residuals(error, "pearson")^2, na.rm=TRUE),
                     dispersion = df.res*summary(error, corr = FALSE)$dispersion,
                     deviance = deviance(error))
  fac <- attr(terms(mod), "factors")
  names <- if (has_intercept(mod)) term.names(mod)[-1]
  else term.names(mod)
  n.terms <- length(names)
  X <- model.matrix(mod)
  y <- mod$y
  if (is.null(y)) y <- model.response(model.frame(mod), "numeric")
  wt <- mod$prior.weights
  if (is.null(wt)) wt <- rep(1, length(y))
  asgn <- attr(X, 'assign')
  p <- df <- f <- SS <- rep(0, n.terms+1)
  f[n.terms+1] <- p[n.terms+1] <- NA
  df[n.terms+1] <- df.res
  SS[n.terms+1] <- error.SS
  dispersion <- error.SS/df.res
  for (term in 1:n.terms){
    rels <- names[relatives(names[term], names, fac)]
    exclude.1 <- as.vector(unlist(sapply(c(names[term], rels), which.nms)))
    mod.1 <- glm.fit(X[, -exclude.1, drop = FALSE], y, wt, offset = mod$offset, 
                     family = mod$family, control = mod$control)
    dev.1 <- deviance(mod.1)
    mod.2 <- if (length(rels) == 0) mod
    else {
      exclude.2 <- as.vector(unlist(sapply(rels, which.nms)))
      glm.fit(X[, -exclude.2, drop = FALSE], y, wt, offset = mod$offset, 
              family = mod$family, control = mod$control)
    }
    dev.2 <- deviance(mod.2)
    df[term] <- df.residual(mod.1) - df.residual(mod.2)
    if (df[term] == 0) SS[term] <- f[term] <- p[term] <- NA
    else {
      SS[term] <- dev.1 - dev.2
      f[term] <- SS[term]/(dispersion*df[term])
      p[term] <- pf(f[term], df[term], df.res, lower.tail=FALSE)
    }
  }
  result <- data.frame(SS, df, f, p)
  row.names(result) <- c(names, "Residuals")
  names(result) <- c("Sum Sq", "Df", "F value", "Pr(>F)")
  class(result) <- c("anova", "data.frame")
  attr(result, "heading") <- c("Analysis of Deviance Table (Type II tests)\n", 
                               paste("Response:", responseName(mod)),
                               paste("Error estimate based on",
                                     switch(error.estimate,
                                            pearson="Pearson residuals", 
                                            dispersion="estimated dispersion", 
                                            deviance="deviance"), "\n"))
  result
}

# multinomial logit models (via multinom in the nnet package)

Anova.multinom <-
  function (mod, type = c("II", "III", 2, 3), ...)
  {
    type <- as.character(type)
    type <- match.arg(type)
    if (has_intercept(mod) && length(coef(mod)) == 1 
        && (type == "2" || type == "II")) {
      type <- "III"
      warning("the model contains only an intercept: Type III test substituted")
    }
    switch(type,
           II = Anova_II_multinom(mod, ...),
           III = Anova_III_multinom(mod, ...),
           "2" = Anova_II_multinom(mod, ...),
           "3" = Anova_III_multinom(mod, ...))
  }

Anova_II_multinom <- function (mod, ...)
{
  which.nms <- function(name) which(asgn == which(names ==
                                                    name))
  fac <- attr(terms(mod), "factors")
  names <- if (has_intercept(mod)) term.names(mod)[-1]
  else term.names(mod)
  n.terms <- length(names)
  X <- model.matrix(mod)
  y <- model.response(model.frame(mod))
  wt <- if (is.matrix(y)) rep(1, nrow(y)) else mod$weights
  asgn <- attr(X, "assign")
  p <- LR <- rep(0, n.terms)
  df <- df.terms(mod)
  for (term in 1:n.terms) {
    rels <- names[relatives(names[term], names, fac)]
    exclude.1 <- as.vector(unlist(sapply(c(names[term], rels),
                                         which.nms)))
    mod.1 <-if (n.terms > 1) nnet::multinom(y ~ X[, -c(1, exclude.1)], weights=wt, trace=FALSE)
    else nnet::multinom(y ~ 1, weights=wt, race=FALSE)
    dev.1 <- deviance(mod.1)
    mod.2 <- if (length(rels) == 0)
      mod
    else {
      exclude.2 <- as.vector(unlist(sapply(rels, which.nms)))
      nnet::multinom(y ~ X[, -c(1, exclude.2)], weights=wt, trace=FALSE)
    }
    dev.2 <- deviance(mod.2)
    LR[term] <- dev.1 - dev.2
    p[term] <- pchisq(LR[term], df[term], lower.tail=FALSE)
  }
  result <- data.frame(LR, df, p)
  row.names(result) <- names
  names(result) <- c("LR Chisq", "Df", "Pr(>Chisq)")
  class(result) <- c("anova", "data.frame")
  attr(result, "heading") <- c("Analysis of Deviance Table (Type II tests)\n",
                               paste("Response:", responseName(mod)))
  result
}

Anova_III_multinom <- function (mod, ...)
{
  names <- if (has_intercept(mod)) term.names(mod)[-1]
  else term.names(mod)
  n.terms <- length(names)
  X <- model.matrix(mod)
  y <- model.response(model.frame(mod))
  wt <- if (is.matrix(y)) rep(1, nrow(y)) else mod$weights
  asgn <- attr(X, "assign")
  p <- LR <- rep(0, n.terms)
  df <- df.terms(mod)
  deviance <- deviance(mod)
  for (term in 1:n.terms) {
    mod.1 <- if (n.terms > 1) nnet::multinom(y ~ X[, term != asgn][, -1], weights=wt, trace=FALSE)
    else nnet::multinom(y ~ 1, weights=wt, trace=FALSE)
    LR[term] <- deviance(mod.1) - deviance
    p[term] <- pchisq(LR[term], df[term], lower.tail=FALSE)
  }
  result <- data.frame(LR, df, p)
  row.names(result) <- names
  names(result) <- c("LR Chisq", "Df", "Pr(>Chisq)")
  class(result) <- c("anova", "data.frame")
  attr(result, "heading") <- c("Analysis of Deviance Table (Type III tests)\n",
                               paste("Response:", responseName(mod)))
  result
}


# proportional-odds logit models (via polr in the MASS package)

Anova.polr <- function (mod, type = c("II", "III", 2, 3), ...)
{
  type <- as.character(type)
  type <- match.arg(type)
  if (has_intercept(mod) && length(coef(mod)) == 1 
      && (type == "2" || type == "II")) {
    type <- "III"
    warning("the model contains only an intercept: Type III test substituted")
  }
  switch(type,
         II = Anova_II_polr(mod, ...),
         III = Anova_III_polr(mod, ...),
         "2" = Anova_II_polr(mod, ...),
         "3" = Anova_III_polr(mod, ...))
}

Anova_II_polr <- function (mod, ...)
{
  if (!requireNamespace("MASS")) stop("MASS package is missing")
  which.nms <- function(name) which(asgn == which(names ==
                                                    name))
  fac <- attr(terms(mod), "factors")
  names <- term.names(mod)
  n.terms <- length(names)
  X <- model.matrix(mod)
  y <- model.response(model.frame(mod))
  wt <- model.weights(model.frame(mod))
  asgn <- attr(X, "assign")
  p <- LR <- rep(0, n.terms)
  df <- df.terms(mod)
  for (term in 1:n.terms) {
    rels <- names[relatives(names[term], names, fac)]
    exclude.1 <- as.vector(unlist(sapply(c(names[term], rels),
                                         which.nms)))
    mod.1 <- if (n.terms > 1) MASS::polr(y ~ X[, -c(1, exclude.1)], weights=wt)
    else MASS::polr(y ~ 1, weights=wt)
    dev.1 <- deviance(mod.1)
    mod.2 <- if (length(rels) == 0)
      mod
    else {
      exclude.2 <- as.vector(unlist(sapply(rels, which.nms)))
      MASS::polr(y ~ X[, -c(1, exclude.2)], weights=wt)
    }
    dev.2 <- deviance(mod.2)
    LR[term] <- dev.1 - dev.2
    p[term] <- pchisq(LR[term], df[term], lower.tail=FALSE)
  }
  result <- data.frame(LR, df, p)
  row.names(result) <- names
  names(result) <- c("LR Chisq", "Df", "Pr(>Chisq)")
  class(result) <- c("anova", "data.frame")
  attr(result, "heading") <- c("Analysis of Deviance Table (Type II tests)\n",
                               paste("Response:", responseName(mod)))
  result
}

Anova_III_polr <- function (mod, ...)
{
  if (!requireNamespace("MASS")) stop("MASS package is missing")
  names <- term.names(mod)
  n.terms <- length(names)
  X <- model.matrix(mod)
  y <- model.response(model.frame(mod))
  wt <- model.weights(model.frame(mod))
  asgn <- attr(X, "assign")
  p <- LR <- rep(0, n.terms)
  df <- df.terms(mod)
  deviance <- deviance(mod)
  for (term in 1:n.terms) {
    mod.1 <- if (n.terms > 1) MASS::polr(y ~ X[, term != asgn][, -1], weights=wt)
    else MASS::polr(y ~ 1, weights=wt)
    LR[term] <- deviance(mod.1) - deviance
    p[term] <- pchisq(LR[term], df[term], lower.tail=FALSE)
  }
  result <- data.frame(LR, df, p)
  row.names(result) <- names
  names(result) <- c("LR Chisq", "Df", "Pr(>Chisq)")
  class(result) <- c("anova", "data.frame")
  attr(result, "heading") <- c("Analysis of Deviance Table (Type III tests)\n",
                               paste("Response:", responseName(mod)))
  result
}

# multivariate linear models

# the following 3 functions copied from the stats package (not exported from stats)

Pillai <- function (eig, q, df.res) {
  test <- sum(eig/(1 + eig))
  p <- length(eig)
  s <- min(p, q)
  n <- 0.5 * (df.res - p - 1)
  m <- 0.5 * (abs(p - q) - 1)
  tmp1 <- 2 * m + s + 1
  tmp2 <- 2 * n + s + 1
  c(test, (tmp2/tmp1 * test)/(s - test), s * tmp1, s * tmp2)
}

Wilks <- function (eig, q, df.res) {
  test <- prod(1/(1 + eig))
  p <- length(eig)
  tmp1 <- df.res - 0.5 * (p - q + 1)
  tmp2 <- (p * q - 2)/4
  tmp3 <- p^2 + q^2 - 5
  tmp3 <- if (tmp3 > 0) 
    sqrt(((p * q)^2 - 4)/tmp3)
  else 1
  c(test, ((test^(-1/tmp3) - 1) * (tmp1 * tmp3 - 2 * tmp2))/p/q, 
    p * q, tmp1 * tmp3 - 2 * tmp2)
}

HL <- function (eig, q, df.res) {
  test <- sum(eig)
  p <- length(eig)
  m <- 0.5 * (abs(p - q) - 1)
  n <- 0.5 * (df.res - p - 1)
  s <- min(p, q)
  tmp1 <- 2 * m + s + 1
  tmp2 <- 2 * (s * n + 1)
  c(test, (tmp2 * test)/s/s/tmp1, s * tmp1, tmp2)
}

Roy <- function (eig, q, df.res) {
  p <- length(eig)
  test <- max(eig)
  tmp1 <- max(p, q)
  tmp2 <- df.res - tmp1 + q
  c(test, (tmp2 * test)/tmp1, tmp1, tmp2)
}

has_intercept.mlm <- function (model, ...) 
  any(row.names(coefficients(model)) == "(Intercept)")


Anova.mlm <- function(mod, type=c("II","III", 2, 3), SSPE, error.df, idata, 
                      idesign, icontrasts=c("contr.sum", "contr.poly"), imatrix,
                      test.statistic=c("Pillai", "Wilks", "Hotelling-Lawley", "Roy"),...){
  if (any(is.na(coef(mod)))) 
    stop(if(!missing(idata)) "between-subjects ", "model is singular")
  wts <- if (!is.null(mod$weights)) mod$weights else rep(1, nrow(model.matrix(mod)))
  type <- as.character(type)
  type <- match.arg(type)
  test.statistic <- match.arg(test.statistic)
  if (missing(SSPE)) SSPE <- wcrossprod(residuals(mod), w=wts)
  if (missing(idata)) {
    idata <- NULL
    idesign <- NULL
  }
  if (missing(imatrix)) imatrix <- NULL
  error.df <- if (missing(error.df)) df.residual(mod)
  else error.df
  switch(type,
         II=Anova_II_mlm(mod, SSPE, error.df, idata, idesign, icontrasts, imatrix, test.statistic, ...),
         III=Anova_III_mlm(mod, SSPE, error.df, idata, idesign, icontrasts, imatrix, test.statistic, ...),
         "2"=Anova_II_mlm(mod, SSPE, error.df, idata, idesign, icontrasts, imatrix, test.statistic, ...),
         "3"=Anova_III_mlm(mod, SSPE, error.df, idata, idesign, icontrasts, imatrix, test.statistic, ...))
}

Anova_III_mlm <- function(mod, SSPE, error.df, idata, idesign, icontrasts, imatrix, test, ...){
  intercept <- has_intercept(mod)
  p <- nrow(coefficients(mod))
  I.p <- diag(p)
  terms <- term.names(mod)
  n.terms <- length(terms)
  assign <- mod$assign
  if (is.null(idata) && is.null(imatrix)){
    if ((n.terms == 0) && intercept) {
      Test <- linearHypothesis(mod, 1, SSPE=SSPE, ...)
      result <- list(SSP=Test$SSPH, SSPE=SSPE, df=1, error.df=error.df,
                     terms="(Intercept)", repeated=FALSE, type="III", test=test)
      class(result) <- "Anova.mlm"
      return(result)
    }
    SSP <- as.list(rep(0, n.terms))
    df <- rep(0, n.terms)
    names(df) <- names(SSP) <- terms
    for (term in 1:n.terms){
      subs <- which(assign == term - intercept)
      hyp.matrix <- I.p[subs,,drop=FALSE]
      Test <- linearHypothesis(mod, hyp.matrix, SSPE=SSPE, ...)
      SSP[[term]] <- Test$SSPH
      df[term]<- length(subs)
    }
    result <- list(SSP=SSP, SSPE=SSPE, df=df, error.df=error.df, terms=terms,
                   repeated=FALSE, type="III", test=test)
  }
  else {
    if (!is.null(imatrix)){
      X.design <- do.call(cbind, imatrix)
      ncols <- sapply(imatrix, ncol)
      end <- cumsum(ncols)
      start <- c(1, (end + 1))[-(length(end) + 1)]
      cols <- mapply(seq, from=start, to=end)
      iterms <- names(end)
      names(cols) <- iterms
      itrms <- unlist(sapply(1:length(imatrix), function(x) replicate(ncol(imatrix[[x]]), x-1)))
      check.imatrix(X.design, itrms)
    }
    else {
      if (is.null(idesign)) stop("idesign (intra-subject design) missing.")
      for (i in 1:length(idata)){
        if (is.null(attr(idata[,i], "contrasts"))){
          contrasts(idata[,i]) <- if (is.ordered(idata[,i])) icontrasts[2]
          else icontrasts[1]
        }
      }
      X.design <- model.matrix(idesign, data=idata)
      i.intercept <- has_intercept(X.design)
      iterms <- term.names(idesign)
      if (i.intercept) iterms <- c("(Intercept)", iterms)
      check.imatrix(X.design)
    }
    n.tests <- n.terms*length(iterms)
    df <- rep(0, n.tests)
    singular <- rep(FALSE, n.tests)
    hnames <- rep("", n.tests)
    P <- SSPEH <- SSP <- as.list(df)
    i <- 0
    for (iterm in iterms){
      for (term in 1:n.terms){
        subs <- which(assign == term - intercept)
        hyp.matrix <- I.p[subs,,drop=FALSE]
        i <- i + 1
        Test <- linearHypothesis(mod, hyp.matrix, SSPE=SSPE, 
                                 idata=idata, idesign=idesign, icontrasts=icontrasts, iterms=iterm, 
                                 check.imatrix=FALSE, P=imatrix[[iterm]], singular.ok=TRUE, ...)
        SSP[[i]] <- Test$SSPH
        SSPEH[[i]] <- Test$SSPE
        P[[i]] <- Test$P
        df[i] <- length(subs)
        hnames[i] <- if (iterm == "(Intercept)") terms[term]
        else if (terms[term] == "(Intercept)") iterm
        else paste(terms[term], ":", iterm, sep="")
        singular[i] <- Test$singular
      }
    }
    names(singular) <- names(df) <- names(SSP) <- names(SSPEH) <- names(P) <- hnames
    result <- list(SSP=SSP, SSPE=SSPEH, P=P, df=df, error.df=error.df,
                   terms=hnames, repeated=TRUE, type="III", test=test, 
                   idata=idata, idesign=idesign, icontrasts=icontrasts, imatrix=imatrix,
                   singular=singular)       
  }
  class(result) <- "Anova.mlm"
  result
}

Anova_II_mlm <- function(mod, SSPE, error.df, idata, idesign, icontrasts, imatrix, test, ...){
  wts <- if (!is.null(mod$weights)) mod$weights else rep(1, nrow(model.matrix(mod)))
  V <- solve(wcrossprod(model.matrix(mod), w=wts))
  SSP.term <- function(term, iterm){
    which.term <- which(term == terms)
    subs.term <- which(assign == which.term)
    relatives <- relatives(term, terms, fac)
    subs.relatives <- NULL
    for (relative in relatives) subs.relatives <- c(subs.relatives, which(assign==relative))
    hyp.matrix.1 <- I.p[subs.relatives,,drop=FALSE]
    hyp.matrix.2 <- I.p[c(subs.relatives, subs.term),,drop=FALSE]
    if (missing(iterm)){
      SSP1 <- if (length(subs.relatives) == 0) 0 
      else linearHypothesis(mod, hyp.matrix.1, SSPE=SSPE, V=V, singular.ok=TRUE, ...)$SSPH
      SSP2 <- linearHypothesis(mod, hyp.matrix.2, SSPE=SSPE, V=V, singular.ok=TRUE, ...)$SSPH
      return(SSP2 - SSP1)
    }
    else {
      SSP1 <- if (length(subs.relatives) == 0) 0 
      else linearHypothesis(mod, hyp.matrix.1, SSPE=SSPE, V=V, 
                            idata=idata, idesign=idesign, iterms=iterm, icontrasts=icontrasts, P=imatrix[[iterm]], singular.ok=TRUE, ...)$SSPH
      lh2 <- linearHypothesis(mod, hyp.matrix.2, SSPE=SSPE, V=V, 
                              idata=idata, idesign=idesign, iterms=iterm, icontrasts=icontrasts, P=imatrix[[iterm]], singular.ok=TRUE, ...)
      return(list(SSP = lh2$SSPH - SSP1, SSPE=lh2$SSPE, P=lh2$P, singular=lh2$singular))
    }
  }
  fac <- attr(terms(mod), "factors")
  intercept <- has_intercept(mod)
  p <- nrow(coefficients(mod))
  I.p <- diag(p)
  assign <- mod$assign
  terms <- term.names(mod)
  if (intercept) terms <- terms[-1]
  n.terms <- length(terms)
  if (n.terms == 0){
    message("Note: model has only an intercept; equivalent type-III tests substituted.")
    return(Anova_III_mlm(mod, SSPE, error.df, idata, idesign, icontrasts, imatrix, test, ...))
  }
  if (is.null(idata) && is.null(imatrix)){
    SSP <- as.list(rep(0, n.terms))
    df <- rep(0, n.terms)
    names(df) <- names(SSP) <- terms
    for (i in 1:n.terms){
      SSP[[i]] <- SSP.term(terms[i])
      df[i]<- df.terms(mod, terms[i])
    }    
    result <- list(SSP=SSP, SSPE=SSPE, df=df, error.df=error.df, terms=terms,
                   repeated=FALSE, type="II", test=test)
  }
  else {
    if (!is.null(imatrix)){
      X.design <- do.call(cbind, imatrix)
      ncols <- sapply(imatrix, ncol)
      end <- cumsum(ncols)
      start <- c(1, (end + 1))[-(length(end) + 1)]
      cols <- mapply(seq, from=start, to=end)
      iterms <- names(end)
      names(cols) <- iterms
      itrms <- unlist(sapply(1:length(imatrix), function(x) replicate(ncol(imatrix[[x]]), x-1)))
      check.imatrix(X.design, itrms)     
    }
    else {
      if (is.null(idesign)) stop("idesign (intra-subject design) missing.")
      for (i in 1:length(idata)){
        if (is.null(attr(idata[,i], "contrasts"))){
          contrasts(idata[,i]) <- if (is.ordered(idata[,i])) icontrasts[2]
          else icontrasts[1]
        }
      }
      X.design <- model.matrix(idesign, data=idata)
      iintercept <- has_intercept(X.design)
      iterms <- term.names(idesign)
      if (iintercept) iterms <- c("(Intercept)", iterms)
      check.imatrix(X.design)
    }
    n.tests <-(n.terms + intercept)*length(iterms)
    df <- rep(0, n.tests)
    singular <- rep(FALSE, n.tests)
    hnames <- rep("", length(df))
    P <- SSPEH <- SSP <- as.list(df)
    i <- 0
    for (iterm in iterms){
      if (intercept){
        i <- i + 1
        hyp.matrix.1 <- I.p[-1,,drop=FALSE]
        SSP1 <- linearHypothesis(mod, hyp.matrix.1, SSPE=SSPE, V=V, 
                                 idata=idata, idesign=idesign, iterms=iterm, icontrasts=icontrasts, 
                                 check.imatrix=FALSE, P=imatrix[[iterm]], singular.ok=TRUE, ...)$SSPH
        lh2 <- linearHypothesis(mod, I.p, SSPE=SSPE, V=V, 
                                idata=idata, idesign=idesign, iterms=iterm, icontrasts=icontrasts, 
                                check.imatrix=FALSE, P=imatrix[[iterm]], singular.ok=TRUE, ...)
        SSP[[i]] <- lh2$SSPH - SSP1
        SSPEH[[i]] <- lh2$SSPE
        P[[i]] <- lh2$P
        singular[i] <- lh2$singular
        df[i] <- 1
        hnames[i] <- iterm
      }
      for (term in 1:n.terms){
        subs <- which(assign == term)
        i <- i + 1
        Test <- SSP.term(terms[term], iterm)
        SSP[[i]] <- Test$SSP
        SSPEH[[i]] <- Test$SSPE
        P[[i]] <- Test$P
        singular[i] <- Test$singular
        df[i]<- length(subs)
        hnames[i] <- if (iterm == "(Intercept)") terms[term]
        else paste(terms[term], ":", iterm, sep="")
      }
    }
    names(singular) <- names(df) <- names(P) <- names(SSP) <- names(SSPEH) <- hnames
    result <- list(SSP=SSP, SSPE=SSPEH, P=P, df=df, error.df=error.df,
                   terms=hnames, repeated=TRUE, type="II", test=test,
                   idata=idata, idesign=idesign, icontrasts=icontrasts, imatrix=imatrix,
                   singular=singular)       
  }
  class(result) <- "Anova.mlm"
  result
}

print.Anova.mlm <- function(x, ...){
  if ((!is.null(x$singular)) && any(x$singular)) stop("singular error SSP matrix; multivariate tests unavailable\ntry summary(object, multivariate=FALSE)")
  test <- x$test
  repeated <- x$repeated
  ntests <- length(x$terms)
  tests <- matrix(NA, ntests, 4)
  if (!repeated) SSPE.qr <- qr(x$SSPE) 
  for (term in 1:ntests){
    # some of the code here adapted from stats:::summary.manova
    eigs <- Re(eigen(qr.coef(if (repeated) qr(x$SSPE[[term]]) else SSPE.qr,
                             x$SSP[[term]]), symmetric = FALSE)$values)
    tests[term, 1:4] <- switch(test,
                               Pillai = Pillai(eigs, x$df[term], x$error.df),
                               Wilks = Wilks(eigs, x$df[term], x$error.df),
                               "Hotelling-Lawley" = HL(eigs, x$df[term], x$error.df),
                               Roy = Roy(eigs, x$df[term], x$error.df))
  }
  ok <- tests[, 2] >= 0 & tests[, 3] > 0 & tests[, 4] > 0
  ok <- !is.na(ok) & ok
  tests <- cbind(x$df, tests, pf(tests[ok, 2], tests[ok, 3], tests[ok, 4], 
                                 lower.tail = FALSE))
  rownames(tests) <- x$terms
  colnames(tests) <- c("Df", "test stat", "approx F", "num Df", "den Df", "Pr(>F)")
  tests <- structure(as.data.frame(tests), 
                     heading = paste("\nType ", x$type, if (repeated) " Repeated Measures",
                                     " MANOVA Tests: ", test, " test statistic", sep=""), 
                     class = c("anova", "data.frame"))
  print(tests, ...)      
  invisible(x)
}


# summary.Anova.mlm and print.summary.Anova.mlm methods
#  with contributions from Gabriel Baud-Bovy
summary.Anova.mlm <- function (object, test.statistic, univariate=object$repeated, multivariate=TRUE, p.adjust.method, ...) {
  GG <- function(SSPE, P) { # Greenhouse-Geisser correction
    p <- nrow(SSPE)
    if (p < 2) 
      return(NA)
    lambda <- eigen(SSPE %*% solve(t(P) %*% P))$values
    lambda <- lambda[lambda > 0]
    ((sum(lambda)/p)^2)/(sum(lambda^2)/p)
  }
  HF <- function(gg, error.df, p) { # Huynh-Feldt correction
    ((error.df + 1) * p * gg - 2)/(p * (error.df - p * gg))
  }
  mauchly <- function(SSD, P, df) {
    # most of this function borrowed from stats:::mauchly.test.SSD
    if (nrow(SSD) < 2) 
      return(c(NA, NA))
    Tr <- function(X) sum(diag(X))
    p <- nrow(P)
    I <- diag(p)
    Psi <- t(P) %*% I %*% P
    B <- SSD
    pp <- nrow(SSD)
    U <- solve(Psi, B)
    n <- df
    logW <- log(det(U)) - pp * log(Tr(U/pp))
    rho <- 1 - (2 * pp^2 + pp + 2)/(6 * pp * n)
    w2 <- (pp + 2) * (pp - 1) * (pp - 2) * (2 * pp^3 + 6 * 
                                              pp^2 + 3 * p + 2)/(288 * (n * pp * rho)^2)
    z <- -n * rho * logW
    f <- pp * (pp + 1)/2 - 1
    Pr1 <- pchisq(z, f, lower.tail = FALSE)
    Pr2 <- pchisq(z, f + 4, lower.tail = FALSE)
    pval <- Pr1 + w2 * (Pr2 - Pr1)
    c(statistic = c(W = exp(logW)), p.value = pval)
  }
  if (missing(test.statistic)) 
    test.statistic <- c("Pillai", "Wilks", "Hotelling-Lawley", "Roy")
  test.statistic <- match.arg(test.statistic, c("Pillai", "Wilks", "Hotelling-Lawley", "Roy"), several.ok = TRUE)
  nterms <- length(object$terms)
  summary.object <- list(type=object$type, repeated=object$repeated, 
                         multivariate.tests=NULL, univariate.tests=NULL, 
                         pval.adjustments=NULL, sphericity.tests=NULL)
  if (multivariate){
    summary.object$multivariate.tests <- vector(nterms, mode="list")
    names(summary.object$multivariate.tests) <- object$terms 
    summary.object$SSPE <- object$SSPE
    for (term in 1:nterms) {
      hyp <- list(SSPH = object$SSP[[term]], 
                  SSPE = if (object$repeated) object$SSPE[[term]] else object$SSPE, 
                  P = if (object$repeated) object$P[[term]] else NULL, 
                  test = test.statistic, df = object$df[term], 
                  df.residual = object$error.df, title = object$terms[term],
                  singular = if (!is.null(object$singular)) object$singular[term]
                  )
      class(hyp) <- "linearHypothesis.mlm"
      summary.object$multivariate.tests[[term]] <- hyp
    }
  }
  if (object$repeated && univariate) {
    singular <- object$singular
    error.df <- object$error.df
    table <- matrix(0, nterms, 6)
    table2 <- matrix(0, nterms, 4)
    table3 <- matrix(0, nterms, 2)
    rownames(table3) <- rownames(table2) <- rownames(table) <- object$terms
    colnames(table) <- c("Sum Sq", "num Df", "Error SS", "den Df", "F value", "Pr(>F)")
    colnames(table2) <- c("GG eps", "Pr(>F[GG])", "HF eps","Pr(>F[HF])")
    colnames(table3) <- c("Test statistic", "p-value")
    if (any(singular))
      warning("one or more error SSP matrix:\ncorresponding non-sphericity tests and corrections not available")
    for (term in 1:nterms) {
      SSP <- object$SSP[[term]]
      SSPE <- object$SSPE[[term]]
      P <- object$P[[term]]
      p <- ncol(P)
      PtPinv <- solve(t(P) %*% P)
      gg <- if (!singular[term]) GG(SSPE, P) else NA
      table[term, "Sum Sq"] <- sum(diag(SSP %*% PtPinv))
      table[term, "Error SS"] <- sum(diag(SSPE %*% PtPinv))
      table[term, "num Df"] <- object$df[term] * p
      table[term, "den Df"] <- error.df * p
      table[term, "F value"] <- (table[term, "Sum Sq"]/table[term, "num Df"])/
        (table[term, "Error SS"]/table[term, "den Df"])
      table[term, "Pr(>F)"] <- pf(table[term, "F value"], table[term, "num Df"], table[term, "den Df"], 
                                  lower.tail = FALSE)
      table2[term, "GG eps"] <- gg
      table2[term, "HF eps"] <- if (!singular[term]) HF(gg, error.df, p) else NA
      table3[term, ] <- if (!singular[term]) mauchly(SSPE, P, object$error.df) else NA
    }
    table3 <- na.omit(table3)
    if (nrow(table3) > 0) {
      table2[, "Pr(>F[GG])"] <- pf(table[, "F value"], table2[, "GG eps"] * 
                                     table[, "num Df"], table2[, "GG eps"] * table[, "den Df"], 
                                   lower.tail = FALSE)
      table2[, "Pr(>F[HF])"] <- pf(table[, "F value"], pmin(1, table2[, "HF eps"]) * 
                                     table[, "num Df"], pmin(1, table2[, "HF eps"]) * table[, "den Df"], 
                                   lower.tail = FALSE)
      table2 <- na.omit(table2)
      if (any(table2[, "HF eps"] > 1)) warning("HF eps > 1 treated as 1")
    }
    class(table3) <- class(table) <- "anova"
    summary.object$univariate.tests <- table
    summary.object$pval.adjustments <- table2
    summary.object$sphericity.tests <- table3
  }
  if (!object$repeated && univariate) {
    SS <- sapply(object$SSP, diag)
    SSE <- diag(object$SSPE)
    df <- object$df
    dfe <- object$error.df
    F <- (SS/df)/(SSE/dfe)
    SS <- cbind(SS, residuals=SSE)
    SS <- rbind(df=c(df, residuals=dfe), SS)
    p <- pf(F, df, dfe, lower.tail=FALSE)
    result <- list(SS=t(SS), F=t(F), p=t(p), type=object$type)
    if (!missing(p.adjust.method)){
      if (isTRUE(p.adjust.method)) p.adjust.method <- "holm"
      p.adj <- apply(p, 2, p.adjust, method=p.adjust.method)
      result$p.adjust <- t(p.adj)
      result$p.adjust.method <- p.adjust.method
    }
    class(result) = "univaov"
    summary.object$univaov <- result
  }
  class(summary.object) <- "summary.Anova.mlm"
  summary.object
}

print.summary.Anova.mlm <- function(x, digits = getOption("digits"), SSP=TRUE, SSPE=SSP, ... ) {
  if (!is.null(x$multivariate.tests)) {
    cat(paste("\nType ", x$type, if (x$repeated) 
      " Repeated Measures", " MANOVA Tests:\n", sep = ""))
    if ((!x$repeated) && SSPE) {
      cat("\nSum of squares and products for error:\n")
      print(x$SSPE, digits = digits, ...)
    }
    for (term in 1:length(x$multivariate.tests)) {
      cat(paste("\n------------------------------------------\n", 
                "\nTerm:", names(x$multivariate.tests)[term], "\n"))
      print(x$multivariate.tests[[term]], digits = digits, SSP=SSP, SSPE=FALSE, ...)
    }
  }
  if  (!is.null(x$univariate.tests)) {
    cat("\nUnivariate Type", x$type, "Repeated-Measures ANOVA Assuming Sphericity\n\n")
    print(x$univariate.tests)
    if (nrow(x$sphericity.tests) > 0) {
      cat("\n\nMauchly Tests for Sphericity\n\n")
      print(x$sphericity.tests)
      cat("\n\nGreenhouse-Geisser and Huynh-Feldt Corrections\n", 
          "for Departure from Sphericity\n\n")
      table <- x$pval.adjustments[, 1:2, drop = FALSE]
      class(table) <- "anova"
      print(table, ...)
      cat("\n")
      table <- x$pval.adjustments[, 3:4, drop = FALSE]
      class(table)
      print(table, ...)
    }
  }
  if (!is.null(x$univaov)){
    print(x$univaov, ...)
  }
  invisible(x)
}

print.univaov <- function(x, digits = max(getOption("digits") - 2L, 3L), 
                          style=c("wide", "long"), 
                          by=c("response", "term"),
                          ...){
  style <- match.arg(style)
  if (style == "wide") {
    cat("\n Type", x$type, "Sums of Squares\n")
    print(x$SS, digits=digits)
    cat("\n F-tests\n")
    F <- x$F
    print(round(F, 2))
    cat("\n p-values\n")
    p <- format.pval(x$p)
    p <- matrix(p, nrow=nrow(F))
    rownames(p) <- rownames(F)
    colnames(p) <- colnames(F)
    print(p, quote=FALSE)
    if (!is.null(x$p.adjust)){
      cat("\n p-values adjusted (by term) for simultaneous inference by", x$p.adjust.method, "method\n")
      p.adjust <- format.pval(x$p.adjust)
      p.adjust <- matrix(p.adjust, nrow=nrow(F))
      rownames(p.adjust) <- rownames(F)
      colnames(p.adjust) <- colnames(F)
      print(p.adjust, quote=FALSE)
    }
  }
  else {
    x.df <- as.data.frame(x, by=by)
    x.df$F <- round(x.df$F, 2)
    x.df$p <- format.pval(x.df$p)
    if (!is.null(x$p.adjust)) x.df$"adjusted p" <- format.pval(x.df$"adjusted p")
    cat("\n Type", x$type, "Sums of Squares and F tests\n")
    print(x.df, quote=FALSE, digits=digits)
  }
  invisible(x)
}

as.data.frame.univaov <- function(x, row.names, optional, by=c("response", "term"), ...) {
  melt <- function(data, varnames = names(dimnames(data)), value.name = "value") {
    dn <- dimnames(data)
    labels <- expand.grid( dn[[1]], dn[[2]])
    colnames(labels) <- varnames
    value_df <- setNames(data.frame(as.vector(data)), value.name)
    cbind(labels, value_df)
  }
  nv <- ncol(x$F)
  nt <- nrow(x$F)
  by <- match.arg(by)
  if (by=="response") {
    vn <- c("term", "response")
    df <- matrix(x$SS[1:nt, "df", drop=FALSE], nrow=nt, ncol=nv)
    SS <- melt(x$SS[1:nt, -1, drop=FALSE], varnames=vn, value.name="SS")	
    F <- melt(x$F, varnames=vn, value.name="F")
    p <- melt(x$p, varnames=vn, value.name="p")
    if (!is.null(x$p.adjust)) p.adjust <- melt(x$p.adjust, varnames=vn, value.name="adjusted p")
  }
  else {
    vn <- rev(c("term", "response"))
    df <- t(matrix(x$SS[1:nt, "df", drop=FALSE], nrow=nt, ncol=nv))
    SS <- melt(t(x$SS[1:nt, -1, drop=FALSE]), varnames=vn, value.name="SS")	
    F <- melt(t(x$F), varnames=vn, value.name="F")
    p <- melt(t(x$p), varnames=vn, value.name="p")
    if (!is.null(x$p.adjust)) p.adjust <- melt(t(x$p.adjust), varnames=vn, value.name="adjusted p")
  }
  
  result <- cbind(SS[,c(2,1,3)], df=c(df), F=F[,"F"], p=p[,"p"])
  if (!is.null(x$p.adjust)) result <- cbind(result, "adjusted p"=p.adjust[, "adjusted p"])
  result
}

Anova.manova <- function(mod, ...){
  class(mod) <- c("mlm", "lm")
  Anova(mod, ...)
}

Manova <- function(mod, ...){
  UseMethod("Manova")
}

Manova.mlm <- function(mod, ...){
  Anova(mod, ...)
}

# Cox regression models

df.residual.coxph <- function(object, ...){    
  object$n - sum(!is.na(coef(object)))
}

alias.coxph <- function(object, ...){
  if(any(which <- is.na(coef(object)))) return(list(Complete=which))
  else list()
}

logLik.coxph <- function(object, ...) object$loglik[2]

Anova.coxph <- function(mod, type=c("II","III", 2, 3), test.statistic=c("LR", "Wald"), ...){
  type <- as.character(type)
  type <- match.arg(type)
  test.statistic <- match.arg(test.statistic)
  if (length((mod$rscore) > 0) && (test.statistic == "LR")){ 
    warning("LR tests unavailable with robust variances\n  Wald tests substituted")
    test.statistic <- "Wald"
  }
  rhs <- as.character(formula(mod))[[3]]
  if (test.statistic == "LR" && grepl("tt\\(", rhs)){
    warning("LR tests unavailable for models using the tt argument\n  Wald tests substituted")
    test.statistic <- "Wald"
  }
  names <- term.names(mod)
  clusters <- grepl("cluster\\(", names)
  strata <- grepl("strata\\(", names)
  if ((any(clusters) || any(strata)) && test.statistic == "LR"){
    warning("LR tests not supported for models with clusters or strata\n Wald tests substituted")
    test.statistic <- "Wald"
  }
  switch(type,
         II=switch(test.statistic,
                   LR=Anova_II_LR_coxph(mod),
                   Wald=Anova.default(mod, type="II", test.statistic="Chisq", vcov.=vcov(mod, complete=FALSE))),
         III=switch(test.statistic,
                    LR=Anova_III_LR_coxph(mod),
                    Wald=Anova.default(mod, type="III", test.statistic="Chisq", vcov.=vcov(mod, complete=FALSE))),
         "2"=switch(test.statistic,
                    LR=Anova_II_LR_coxph(mod),
                    Wald=Anova.default(mod, type="II", test.statistic="Chisq", vcov.=vcov(mod, complete=FALSE))),
         "3"=switch(test.statistic,
                    LR=Anova_III_LR_coxph(mod),
                    Wald=Anova.default(mod, type="III", test.statistic="Chisq", vcov.=vcov(mod, complete=FALSE))))
}

Anova_II_LR_coxph <- function(mod, ...){
  if (!requireNamespace("survival")) stop("survival package is missing")
  which.nms <- function(name) which(asgn == which(names == name))
  fac <-attr(terms(mod), "factors")
  names <- term.names(mod)
  n.terms <- length(names)
  df <- df.terms(mod)
  if (sum(df > 0) < 2) {
    return(anova(mod, test="Chisq"))
  }
  method <- mod$method
  weights <- mod$weights
  X <- model.matrix(mod)
  asgn <- attr(X, 'assign')
  p <- LR <- rep(0, n.terms)
  df <- df.terms(mod)
  for (term in 1:n.terms){
    if (df[names[term]] == 0){
      message("skipping term ", names[term])
      next
    }
    rels <- names[relatives(names[term], names, fac)]
    exclude.1 <- as.vector(unlist(sapply(c(names[term], rels), which.nms)))
    mod.1 <- survival::coxph(mod$y ~ X[, -exclude.1, drop = FALSE], method=method, weights=weights)
    loglik.1 <- logLik(mod.1)
    mod.2 <- if (length(rels) == 0) mod
    else {
      exclude.2 <- as.vector(unlist(sapply(rels, which.nms)))
      survival::coxph(mod$y ~ X[, -exclude.2, drop = FALSE], method=method, weights=weights)
    }
    loglik.2 <- logLik(mod.2)
    LR[term] <- -2*(loglik.1 - loglik.2)
    p[term] <- pchisq(LR[term], df[term], lower.tail=FALSE)
  }
  result <- data.frame(LR, df, p)
  row.names(result) <- names
  names(result) <- c("LR Chisq", "Df", "Pr(>Chisq)")
  class(result) <- c("anova", "data.frame")
  result <- result[df > 0, , drop=FALSE]
  attr(result, "heading") <- "Analysis of Deviance Table (Type II tests)"
  result
}

Anova_III_LR_coxph <- function(mod, ...){
  if (!requireNamespace("survival")) stop("survival package is missing")
  which.nms <- function(name) which(asgn == which(names == name))
  fac <-attr(terms(mod), "factors")
  names <- term.names(mod)
  n.terms <- length(names)
  df <- df.terms(mod)
  if (sum(df > 0) < 2) {
    return(anova(mod, test="Chisq"))
  }
  method <- mod$method
  weights <- mod$weights
  X <- model.matrix(mod)
  asgn <- attr(X, 'assign')
  LR <- p <- rep(0, n.terms)
  loglik1 <- logLik(mod)
  for (term in 1:n.terms){
    if (df[names[term]] == 0){
      message("skipping term ", names[term])
      next
    }
    mod.0 <- survival::coxph(mod$y ~ X[, -which.nms(names[term])], method=method, weights=weights)
    LR[term] <- -2*(logLik(mod.0) - loglik1)
    p[term] <- pchisq(LR[term], df[term], lower.tail=FALSE)
  }
  result <- data.frame(LR, df, p)
  row.names(result) <- names
  names(result) <- c("LR Chisq", "Df","Pr(>Chisq)")
  class(result) <- c("anova", "data.frame")
  result <- result[df > 0, , drop=FALSE]
  attr(result,"heading") <- "Analysis of Deviance Table (Type III tests)"
  result
}

# parametric survival regression models

alias.survreg <- function(object, ...){
  if(any(which <- diag(vcov(object, complete=FALSE)) < 1e-10)) return(list(Complete=which))
  else list()
}

logLik.survreg <- function(object, ...) object$loglik[2]

Anova.survreg <- function(mod, type=c("II","III", 2, 3), test.statistic=c("LR", "Wald"), ...){
  type <- as.character(type)
  type <- match.arg(type)
  test.statistic <- match.arg(test.statistic)
  if (length((mod$rscore) > 0) && (test.statistic == "LR")){ 
    warning("LR tests unavailable with robust variances\nWald tests substituted")
    test.statistic <- "Wald"
  }
  names <- term.names(mod)
  clusters <- grepl("cluster\\(", names)
  strata <- grepl("strata\\(", names)
  if ((any(clusters) || any(strata)) && test.statistic == "LR"){
    warning("LR tests not supported for models with clusters or strata\n Wald tests substituted")
    test.statistic <- "Wald"
  }
  switch(type,
         II=switch(test.statistic,
                   LR=Anova_II_LR_survreg(mod),
                   Wald=Anova_Wald_survreg(mod, type="2")),
         III=switch(test.statistic,
                    LR=Anova_III_LR_survreg(mod),
                    Wald=Anova_Wald_survreg(mod, type="3")),
         "2"=switch(test.statistic,
                    LR=Anova_II_LR_survreg(mod),
                    Wald=Anova_Wald_survreg(mod, type="2")),
         "3"=switch(test.statistic,
                    LR=Anova_III_LR_survreg(mod),
                    Wald=Anova_Wald_survreg(mod, type="3")))
}

Anova_II_LR_survreg <- function(mod, ...){
  if (!requireNamespace("survival")) stop("survival package is missing")
  dist <- mod$dist
  scale <- mod$call$scale
  weights <- model.frame(mod)$"(weights)"
  arg.list <- list(dist=dist)
  if (!is.null(scale)) arg.list$scale <- scale
  if (!is.null(weights)) arg.list$weights <- weights
  which.nms <- function(name) which(asgn == which(names == name))
  fac <-attr(terms(mod), "factors")
  names <- term.names(mod)
  X <- model.matrix(mod)
  asgn <- attr(X, 'assign')
  asgn <- asgn[asgn != 0]
  if (has_intercept(mod)){
    int <- which(names == "(Intercept)")
    X <- X[, -int]
    names <- names[-int]
  }
  n.terms <- length(names)
  if (n.terms < 2) {
    result <- anova(mod)
    if (!inherits(result, "anova")) class(result) <- c("anova", class(result))
    return(result)
  }
  p <- LR <- rep(0, n.terms)
  df <- df.terms(mod)
  y <- model.frame(mod)[,1]
  for (term in 1:n.terms){
    rels <- names[relatives(names[term], names, fac)]
    exclude.1 <- as.vector(unlist(sapply(c(names[term], rels), which.nms)))
    arg.list$formula <- y ~ X[, -exclude.1, drop = FALSE]
    mod.1 <- do.call(survival::survreg, arg.list)
    loglik.1 <- logLik(mod.1)
    mod.2 <- if (length(rels) == 0) mod
    else {
      arg.list$formula <- y ~ X[, -exclude.2, drop = FALSE]
      exclude.2 <- as.vector(unlist(sapply(rels, which.nms)))
      do.call(survival::survreg, arg.list)     
    }
    loglik.2 <- logLik(mod.2)
    LR[term] <- -2*(loglik.1 - loglik.2)
    p[term] <- pchisq(LR[term], df[term], lower.tail=FALSE)
  }
  result <- data.frame(LR, df, p)
  row.names(result) <- names
  names(result) <- c("LR Chisq", "Df", "Pr(>Chisq)")
  class(result) <- c("anova", "data.frame")
  attr(result, "heading") <- "Analysis of Deviance Table (Type II tests)"
  result
}

Anova_III_LR_survreg <- function(mod, ...){
  if (!requireNamespace("survival")) stop("survival package is missing")
  dist <- mod$dist
  scale <- mod$call$scale
  weights <- model.frame(mod)$"(weights)"
  arg.list <- list(dist=dist)
  if (!is.null(scale)) arg.list$scale <- scale
  if (!is.null(weights)) arg.list$weights <- weights
  which.nms <- function(name) which(asgn == which(names == name))
  fac <-attr(terms(mod), "factors")
  names <- term.names(mod)
  X <- model.matrix(mod)
  asgn <- attr(X, 'assign')
  asgn <- asgn[asgn != 0]
  if (has_intercept(mod)){
    int <- which(names == "(Intercept)")
    X <- X[, -int]
    names <- names[-int]
  }
  n.terms <- length(names)
  if (n.terms < 2){
    result <- anova(mod)
    if (!inherits(result, "anova")) class(result) <- c("anova", class(result))
    return(result)
  }
  p <- LR <- rep(0, n.terms)
  df <- df.terms(mod)
  y <- model.frame(mod)[,1]
  loglik1 <- logLik(mod)
  for (term in 1:n.terms){
    arg.list$formula <- y ~ X[, -which.nms(names[term])]
    mod.0 <- do.call(survival::survreg, arg.list)
    LR[term] <- -2*(logLik(mod.0) - loglik1)
    p[term] <- pchisq(LR[term], df[term], lower.tail=FALSE)
  }
  result <- data.frame(LR, df, p)
  row.names(result) <- names
  names(result) <- c("LR Chisq", "Df","Pr(>Chisq)")
  class(result) <- c("anova", "data.frame")
  attr(result,"heading") <- "Analysis of Deviance Table (Type III tests)"
  result
}

Anova_Wald_survreg <- function(mod, type){
  V <- vcov(mod, complete=FALSE)
  b <- coef(mod)
  if (length(b) != nrow(V)){
    p <- which(grepl("^Log\\(scale", rownames(V)))
    if (length(p) > 0) V <- V[-p, -p]
  }
  Anova.default(mod, V, test.statistic="Chisq", type=type)
}

# Default Anova() method: requires methods for vcov() (if vcov. argument not specified) and coef().

Anova.default <- function(mod, type=c("II","III", 2, 3), test.statistic=c("Chisq", "F"), 
                          vcov.=vcov(mod, complete=FALSE), singular.ok, error.df, ...){
  if (missing(error.df)){
    error.df <- df.residual(mod)
    test.statistic <- match.arg(test.statistic)
    if (test.statistic == "F" && (is.null(error.df) || is.na(error.df))){
      test.statistic <- "Chisq"
      message("residual df unavailable, test.statistic set to 'Chisq'")
    }
  }
  vcov. <- getVcov(vcov., mod)
  X <- model.matrix(mod)
  if (!is.matrix(X)) {
    warning("result of model.matrix(mod) is not a matrix",
            "\ntests may be incorrect\n")
  } else {
    coef.names <- colnames(X)
    if (any(bad <- !(names(coef(mod)) %in% coef.names)))
      warning("there are coefficients in coef(mod)",
              "\nthat are not in the model matrix:\n",
              paste(names(coef(mod))[bad], collapse=", "),
              "\ntests may be incorrect\n\n")
    if (any(bad <- !(colnames(vcov.) %in% coef.names))) 
      warning("there are rows/columns in vcov.",
              "\nthat are not in the model matrix:\n",
              paste(colnames(vcov.)[bad], collapse=", "),
              "\ntests may be incorrect")
  }
  type <- as.character(type)
  type <- match.arg(type)
  if (missing(singular.ok))
    singular.ok <- type == "2" || type == "II"
  switch(type,
         II=Anova_II_default(mod, vcov., test.statistic, singular.ok=singular.ok, 
                             error.df=error.df),
         III=Anova_III_default(mod, vcov., test.statistic, singular.ok=singular.ok,
                               error.df=error.df),
         "2"=Anova_II_default(mod, vcov., test.statistic, singular.ok=singular.ok,
                              error.df=error.df),
         "3"=Anova_III_default(mod, vcov., test.statistic, singular.ok=singular.ok,
                               error.df=error.df))
}

assignVector <- function(model, ...) UseMethod("assignVector")

assignVector.default <- function(model, ...){
  m <- model.matrix(model)
  assign <- attr(m, "assign")
  if (!is.null(assign)) {
    if (!has_intercept(model)) assign <- assign[assign != 0]
    return (assign)
  }
  m <- model.matrix(formula(model), data=model.frame(model))
  assign <- attr(m, "assign")
  if (!has_intercept(model)) assign <- assign[assign != 0]
  assign
}

Anova_II_default <- function(mod, vcov., test, singular.ok=TRUE, error.df,...){
  hyp.term <- function(term){
    which.term <- which(term==names)
    subs.term <- if (is.list(assign)) assign[[which.term]] else which(assign == which.term)
    relatives <- relatives(term, names, fac)
    subs.relatives <- NULL
    for (relative in relatives){
      sr <- if (is.list(assign)) assign[[relative]] else which(assign == relative)
      subs.relatives <- c(subs.relatives, sr)
    }
    hyp.matrix.1 <- I.p[subs.relatives,,drop=FALSE]
    hyp.matrix.1 <- hyp.matrix.1[, not.aliased, drop=FALSE]
    hyp.matrix.2 <- I.p[c(subs.relatives,subs.term),,drop=FALSE]
    hyp.matrix.2 <- hyp.matrix.2[, not.aliased, drop=FALSE]       
    hyp.matrix.term <- if (nrow(hyp.matrix.1) == 0) hyp.matrix.2
    else t(ConjComp(t(hyp.matrix.1), t(hyp.matrix.2), vcov.))            
    hyp.matrix.term <- hyp.matrix.term[!apply(hyp.matrix.term, 1, 
                                              function(x) all(x == 0)), , drop=FALSE]
    if (nrow(hyp.matrix.term) == 0)
      return(c(statistic=NA, df=0))            
    hyp <- linearHypothesis.default(mod, hyp.matrix.term, 
                                    vcov.=vcov., test=test, error.df=error.df,
                                    singular.ok=singular.ok, ...)
    if (test=="Chisq") c(statistic=hyp$Chisq[2], df=hyp$Df[2])
    else c(statistic=hyp$F[2], df=hyp$Df[2])
  }
  not.aliased <- !is.na(coef(mod))
  if (!singular.ok && !all(not.aliased))
    stop("there are aliased coefficients in the model")
  fac <- attr(terms(mod), "factors")
  intercept <- has_intercept(mod)
  p <- length(coefficients(mod))
  I.p <- diag(p)
  assign <- assignVector(mod) 
  if (!is.list(assign)) assign[!not.aliased] <- NA
  else if (intercept) assign <- assign[-1]
  names <- term.names(mod)
  if (intercept) names <- names[-1]
  n.terms <- length(names)
  df <- c(rep(0, n.terms), error.df)
  if (inherits(mod, "coxph") || inherits(mod, "survreg")){
    if (inherits(mod, "coxph")) assign <- assign[assign != 0]
    clusters <- grep("^cluster\\(", names)
    strata <- grep("^strata\\(.*\\)$", names)
    for (cl in clusters) assign[assign > cl] <- assign[assign > cl] - 1
    for (st in strata) assign[assign > st] <- assign[assign > st] - 1
    if (length(clusters) > 0 || length(strata) > 0) {
      message("skipping term ", paste(names[c(clusters, strata)], collapse=", "))
      names <- names[-c(clusters, strata)]
      df <- df[-c(clusters, strata)]
      n.terms <- n.terms - length(clusters) - length(strata)
    }
  }
  p <- teststat <- rep(0, n.terms + 1)
  teststat[n.terms + 1] <- p[n.terms + 1] <- NA
  for (i in 1:n.terms){
    hyp <- hyp.term(names[i])
    teststat[i] <- abs(hyp["statistic"])
    df[i] <- abs(hyp["df"])
    p[i] <- if (test == "Chisq") 
      pchisq(teststat[i], df[i], lower.tail=FALSE) 
    else pf(teststat[i], df[i], df[n.terms + 1], lower.tail=FALSE)
  }
  result <- if (test == "Chisq"){ 
    if (length(df) == n.terms + 1) df <- df[1:n.terms]
    data.frame(df[df > 0], teststat[!is.na(teststat)], p[!is.na(teststat)])
  }
  else data.frame(df, teststat, p)
  if (nrow(result) == length(names) + 1) names <- c(names,"Residuals")
  row.names(result) <- names[df > 0]
  names(result) <- c ("Df", test, if (test == "Chisq") "Pr(>Chisq)" 
                      else "Pr(>F)")
  class(result) <- c("anova", "data.frame")
  attr(result, "heading") <- c("Analysis of Deviance Table (Type II tests)\n", 
                               paste("Response:", responseName(mod)))
  result
}

Anova_III_default <- function(mod, vcov., test, singular.ok=FALSE, error.df, ...){
  intercept <- has_intercept(mod)
  p <- length(coefficients(mod))
  I.p <- diag(p)
  names <- term.names(mod)
  n.terms <- length(names)
  assign <- assignVector(mod) 
  df <- c(rep(0, n.terms), error.df)
  if (inherits(mod, "coxph")){
    if (intercept) names <- names[-1]
    assign <- assign[assign != 0]
    clusters <- grep("^cluster\\(", names)
    strata <- grep("^strata\\(.*\\)$", names)
    for (cl in clusters) assign[assign > cl] <- assign[assign > cl] - 1
    for (st in strata) assign[assign > st] <- assign[assign > st] - 1
    if (length(clusters) > 0 || length(strata) > 0) {
      message("skipping term ", paste(names[c(clusters, strata)], collapse=", "))
      names <- names[-c(clusters, strata)]
      df <- df[-c(clusters, strata)]
      n.terms <- n.terms - length(clusters) - length(strata)
    }
  }
  if (intercept) df[1] <- sum(grepl("^\\(Intercept\\)", names(coef(mod))))
  teststat <- rep(0, n.terms + 1)
  p <- rep(0, n.terms + 1)
  teststat[n.terms + 1] <- p[n.terms + 1] <- NA
  not.aliased <- !is.na(coef(mod))
  if (!singular.ok && !all(not.aliased))
    stop("there are aliased coefficients in the model")
  for (term in 1:n.terms){
    subs <- if (is.list(assign)) assign[[term]] else which(assign == term - intercept)    
    hyp.matrix <- I.p[subs,,drop=FALSE]
    hyp.matrix <- hyp.matrix[, not.aliased, drop=FALSE]
    hyp.matrix <- hyp.matrix[!apply(hyp.matrix, 1, function(x) all(x == 0)), , drop=FALSE]        
    if (nrow(hyp.matrix) == 0){
      teststat[term] <- NA
      df[term] <- 0
      p[term] <- NA
    }
    else {
      hyp <- linearHypothesis.default(mod, hyp.matrix, 
                                      vcov.=vcov., test=test, error.df=error.df,
                                      singular.ok=singular.ok, ...)
      teststat[term] <- if (test=="Chisq") hyp$Chisq[2] else hyp$F[2]
      df[term] <- abs(hyp$Df[2])
      p[term] <- if (test == "Chisq") 
        pchisq(teststat[term], df[term], lower.tail=FALSE) 
      else pf(teststat[term], df[term], df[n.terms + 1], lower.tail=FALSE)
    }
  }
  result <- if (test == "Chisq"){ 
    if (length(df) == n.terms + 1) df <- df[1:n.terms]
    data.frame(df, teststat[!is.na(teststat)], p[!is.na(teststat)])
  }
  else data.frame(df, teststat, p)
  if (nrow(result) == length(names) + 1) names <- c(names,"Residuals")
  row.names(result) <- names
  names(result) <- c ("Df", test, if (test == "Chisq") "Pr(>Chisq)" 
                      else "Pr(>F)")
  class(result) <- c("anova", "data.frame")
  attr(result, "heading") <- c("Analysis of Deviance Table (Type III tests)\n", 
                               paste("Response:", responseName(mod)))
  result
}

## functions for mixed models

# the following function, not exported, to make car consistent with CRAN and development versions of lme4 and with nlme

fixef <- function (object){
  if (isS4(object)) {
    if (!inherits(object, "merMod")) object@fixef
    else lme4::fixef(object)
  }
  else object$coefficients$fixed
}

Anova.merMod <- function(mod, type=c("II","III", 2, 3), 
                         test.statistic=c("Chisq", "F"),
                         vcov.=vcov(mod, complete=FALSE), singular.ok, ...){
  type <- as.character(type)
  type <- match.arg(type)
  test.statistic <- match.arg(test.statistic)
  if (!missing(vcov.)) {
    if (test.statistic != "F"){
      message("Coefficient covariances computed by ", deparse(substitute(vcov.)))
    } else {
      warning('test.statistic="F"; vcov. argument ignored')
    }
  }
  vcov. <- getVcov(vcov., mod)
  if (missing(singular.ok))
    singular.ok <- type == "2" || type == "II"
  Anova.mer(mod=mod, type=type, test.statistic=test.statistic, vcov.=vcov.,
            singular.ok=singular.ok, ...)
}

Anova.mer <- function(mod, type=c("II","III", 2, 3), test.statistic=c("Chisq", "F"),
                      vcov.=vcov(mod, complete=FALSE), singular.ok, ...){
  vcov. <- getVcov(vcov., mod)
  type <- as.character(type)
  type <- match.arg(type)
  test.statistic <- match.arg(test.statistic)
  if (missing(singular.ok))
    singular.ok <- type == "2" || type == "II"
  switch(type,
         II=Anova_II_mer(mod, test=test.statistic, vcov., singular.ok=singular.ok),
         III=Anova_III_mer(mod, test=test.statistic,  vcov., singular.ok=singular.ok),
         "2"=Anova_II_mer(mod, test=test.statistic, vcov., singular.ok=singular.ok),
         "3"=Anova_III_mer(mod, test=test.statistic, vcov., singular.ok=singular.ok))
}

Anova_II_mer <- function(mod, vcov., singular.ok=TRUE, test=c("Chisq", "F"), ...){
  hyp.term <- function(term){ 
    which.term <- which(term==names)
    subs.term <- which(assign==which.term)
    relatives <- relatives(term, names, fac)
    subs.relatives <- NULL
    for (relative in relatives) 
      subs.relatives <- c(subs.relatives, which(assign==relative))
    hyp.matrix.1 <- I.p[subs.relatives,,drop=FALSE]
    hyp.matrix.1 <- hyp.matrix.1[, not.aliased, drop=FALSE]
    hyp.matrix.2 <- I.p[c(subs.relatives,subs.term),,drop=FALSE]
    hyp.matrix.2 <- hyp.matrix.2[, not.aliased, drop=FALSE]       
    hyp.matrix.term <- if (nrow(hyp.matrix.1) == 0) hyp.matrix.2
    else t(ConjComp(t(hyp.matrix.1), t(hyp.matrix.2), vcov.))            
    hyp.matrix.term <- hyp.matrix.term[!apply(hyp.matrix.term, 1, 
                                              function(x) all(x == 0)), , drop=FALSE]
    if (nrow(hyp.matrix.term) == 0)
      return(c(statistic=NA, df=0))            
    hyp <- linearHypothesis(mod, hyp.matrix.term, 
                            vcov.=vcov., singular.ok=singular.ok, test=test, ...)
    if (test == "Chisq") return(c(statistic=hyp$Chisq[2], df=hyp$Df[2]))
    else return(c(statistic=hyp$F[2], df=hyp$Df[2], res.df=hyp$Res.Df[2]))
  }
  test <- match.arg(test)
  not.aliased <- !is.na(fixef(mod))
  if (!singular.ok && !all(not.aliased))
    stop("there are aliased coefficients in the model")
  fac <- attr(terms(mod), "factors")
  intercept <- has_intercept(mod)
  p <- length(fixef(mod))
  I.p <- diag(p)
  if (test == "F"){
    vcov. <- as.matrix(pbkrtest::vcovAdj(mod, details=0))
  }
  assign <- attr(model.matrix(mod), "assign")
  assign[!not.aliased] <- NA
  names <- term.names(mod)
  if (intercept) names <- names[-1]
  n.terms <- length(names)
  p <- teststat <- df <- res.df <- rep(0, n.terms)
  for (i in 1:n.terms){
    hyp <- hyp.term(names[i])
    teststat[i] <- abs(hyp["statistic"])
    df[i] <- abs(hyp["df"])
    res.df[i] <- hyp["res.df"]
    p[i] <- if (test == "Chisq") pchisq(teststat[i], df[i], lower.tail=FALSE) 
    else pf(teststat[i], df[i], res.df[i], lower.tail=FALSE)
  } 
  if (test=="Chisq"){
    result <- data.frame(teststat, df, p)
    row.names(result) <- names
    names(result) <- c ("Chisq", "Df", "Pr(>Chisq)")
    class(result) <- c("anova", "data.frame")
    attr(result, "heading") <- c("Analysis of Deviance Table (Type II Wald chisquare tests)\n", 
                                 paste("Response:", responseName(mod)))
  }
  else {
    result <- data.frame(teststat, df, res.df, p)
    row.names(result) <- names
    names(result) <- c ("F", "Df", "Df.res", "Pr(>F)")
    class(result) <- c("anova", "data.frame")
    attr(result, "heading") <- c("Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)\n", 
                                 paste("Response:", responseName(mod)))
  }
  result
}

Anova_III_mer <- function(mod, vcov., singular.ok=FALSE, test=c("Chisq", "F"), ...){
  intercept <- has_intercept(mod)
  p <- length(fixef(mod))
  I.p <- diag(p)
  names <- term.names(mod)
  n.terms <- length(names)
  assign <- attr(model.matrix(mod), "assign")
  p <- teststat <- df <- res.df <- rep(0, n.terms)
  if (intercept) df[1] <- 1
  not.aliased <- !is.na(fixef(mod))
  if (!singular.ok && !all(not.aliased))
    stop("there are aliased coefficients in the model")
  if (test == "F"){
    vcov. <- as.matrix(pbkrtest::vcovAdj(mod, details=0))
  }
  for (term in 1:n.terms){
    subs <- which(assign == term - intercept)        
    hyp.matrix <- I.p[subs,,drop=FALSE]
    hyp.matrix <- hyp.matrix[, not.aliased, drop=FALSE]
    hyp.matrix <- hyp.matrix[!apply(hyp.matrix, 1, function(x) all(x == 0)), , drop=FALSE]        
    if (nrow(hyp.matrix) == 0){
      teststat[term] <- NA
      df[term] <- 0
      p[term] <- NA
    }
    else {
      hyp <- linearHypothesis(mod, hyp.matrix, test=test,
                              vcov.=vcov., singular.ok=singular.ok, ...)
      if (test == "Chisq"){
        teststat[term] <-  hyp$Chisq[2] 
        df[term] <- abs(hyp$Df[2])
        p[term] <- pchisq(teststat[term], df[term], lower.tail=FALSE) 
      }
      else{
        teststat[term] <-  hyp$F[2]
        df[term] <- abs(hyp$Df[2])
        res.df[term]=hyp$Res.Df[2]
        p[term] <- pf(teststat[term], df[term], res.df[term], lower.tail=FALSE)
      }
    }
  }
  if (test == "Chisq"){
    result <- data.frame(teststat, df, p)
    row.names(result) <- names
    names(result) <- c ("Chisq", "Df", "Pr(>Chisq)")
    class(result) <- c("anova", "data.frame")
    attr(result, "heading") <- c("Analysis of Deviance Table (Type III Wald chisquare tests)\n", 
                                 paste("Response:", responseName(mod)))
  }
  else {
    result <- data.frame(teststat, df, res.df, p)
    row.names(result) <- names
    names(result) <- c ("F", "Df", "Df.res", "Pr(>F)")
    class(result) <- c("anova", "data.frame")
    attr(result, "heading") <- c("Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)\n", 
                                 paste("Response:", responseName(mod)))
  }
  result
}

has_intercept.lme <- function(model, ...){
  any(names(fixef(model)) == "(Intercept)")
}

Anova.lme <- function(mod, type=c("II","III", 2, 3),
                      vcov.=vcov(mod, complete=FALSE), singular.ok, ...){
  if (!missing(vcov.)) message("Coefficient covariances computed by ", deparse(substitute(vcov.)))
  vcov. <- getVcov(vcov., mod)
  type <- as.character(type)
  type <- match.arg(type)
  if (missing(singular.ok))
    singular.ok <- type == "2" || type == "II"
  switch(type,
         II=Anova_II_lme(mod, vcov., singular.ok=singular.ok),
         III=Anova_III_lme(mod, vcov., singular.ok=singular.ok),
         "2"=Anova_II_lme(mod, vcov., singular.ok=singular.ok),
         "3"=Anova_III_lme(mod, vcov., singular.ok=singular.ok))
}

Anova_II_lme <- function(mod, vcov., singular.ok=TRUE, ...){
  hyp.term <- function(term){
    which.term <- which(term==names)
    subs.term <- which(assign==which.term)
    relatives <- relatives(term, names, fac)
    subs.relatives <- NULL
    for (relative in relatives) 
      subs.relatives <- c(subs.relatives, which(assign==relative))
    hyp.matrix.1 <- I.p[subs.relatives,,drop=FALSE]
    hyp.matrix.1 <- hyp.matrix.1[, not.aliased, drop=FALSE]
    hyp.matrix.2 <- I.p[c(subs.relatives,subs.term),,drop=FALSE]
    hyp.matrix.2 <- hyp.matrix.2[, not.aliased, drop=FALSE]       
    hyp.matrix.term <- if (nrow(hyp.matrix.1) == 0) hyp.matrix.2
    else t(ConjComp(t(hyp.matrix.1), t(hyp.matrix.2), vcov.))            
    hyp.matrix.term <- hyp.matrix.term[!apply(hyp.matrix.term, 1, 
                                              function(x) all(x == 0)), , drop=FALSE]
    if (nrow(hyp.matrix.term) == 0)
      return(c(statistic=NA, df=0))            
    hyp <- linearHypothesis(mod, hyp.matrix.term, 
                            vcov.=vcov., singular.ok=singular.ok, ...)
    c(statistic=hyp$Chisq[2], df=hyp$Df[2])
  }
  not.aliased <- !is.na(fixef(mod))
  if (!singular.ok && !all(not.aliased))
    stop("there are aliased coefficients in the model")
  fac <- attr(terms(mod), "factors")
  intercept <- has_intercept(mod)
  p <- length(fixef(mod))
  I.p <- diag(p)
  attribs.mm <- attributes(model.matrix(mod))
  assign <- attribs.mm$assign
  nms.coef <- names(coef(mod))
  nms.mm <- attribs.mm$dimnames[[2]]
  assign[!not.aliased] <- NA
  valid.coefs <- nms.mm %in% nms.coef
  if (any(!valid.coefs)){
    warning("The following coefficients are not in the model due to missing levels:\n",
            paste(nms.mm[!valid.coefs], collapse=", "))
  }
  assign <- assign[valid.coefs]
  names <- term.names(mod)
  if (intercept) names <- names[-1]
  n.terms <- length(names)
  p <- teststat <- df <- rep(0, n.terms)
  for (i in 1:n.terms){
    hyp <- hyp.term(names[i])
    teststat[i] <- abs(hyp["statistic"])
    df[i] <- abs(hyp["df"])
    p[i] <- pchisq(teststat[i], df[i], lower.tail=FALSE) 
  }    
  result <- data.frame(teststat, df, p)
  row.names(result) <- names
  names(result) <- c("Chisq", "Df", "Pr(>Chisq)")
  class(result) <- c("anova", "data.frame")
  attr(result, "heading") <- c("Analysis of Deviance Table (Type II tests)\n", 
                               paste("Response:", responseName(mod)))
  result
}

Anova_III_lme <- function(mod, vcov., singular.ok=FALSE, ...){
  intercept <- has_intercept(mod)
  p <- length(fixef(mod))
  I.p <- diag(p)
  names <- term.names(mod)
  n.terms <- length(names)
  attribs.mm <- attributes(model.matrix(mod))
  assign <- attribs.mm$assign
  nms.coef <- names(coef(mod))
  nms.mm <- attribs.mm$dimnames[[2]]
  not.aliased <- !is.na(fixef(mod))
  if (!singular.ok && !all(not.aliased))
    stop("there are aliased coefficients in the model")
  assign[!not.aliased] <- NA
  valid.coefs <- nms.mm %in% nms.coef
  if (any(!valid.coefs)){
    warning("The following coefficients are not in the model due to missing levels:\n",
            paste(nms.mm[!valid.coefs], collapse=", "))
  }
  assign <- assign[valid.coefs]
  df <- rep(0, n.terms)
  if (intercept) df[1] <- 1
  p <- teststat <-rep(0, n.terms)
  for (term in 1:n.terms){
    subs <- which(assign == term - intercept)        
    hyp.matrix <- I.p[subs,,drop=FALSE]
    hyp.matrix <- hyp.matrix[, not.aliased, drop=FALSE]
    hyp.matrix <- hyp.matrix[!apply(hyp.matrix, 1, function(x) all(x == 0)), , drop=FALSE]        
    if (nrow(hyp.matrix) == 0){
      teststat[term] <- NA
      df[term] <- 0
      p[term] <- NA
    }
    else {
      hyp <- linearHypothesis(mod, hyp.matrix, 
                              vcov.=vcov., singular.ok=singular.ok, ...)
      teststat[term] <-  hyp$Chisq[2] 
      df[term] <- abs(hyp$Df[2])
      p[term] <- pchisq(teststat[term], df[term], lower.tail=FALSE) 
    }
  }
  result <- data.frame(teststat, df, p)
  row.names(result) <- names
  names(result) <- c ("Chisq",  "Df", "Pr(>Chisq)")
  class(result) <- c("anova", "data.frame")
  attr(result, "heading") <- c("Analysis of Deviance Table (Type III tests)\n", 
                               paste("Response:", responseName(mod)))
  result
}

Anova.svyglm <- function(mod, ...) Anova.default(mod, ...)

Anova.rlm <- function(mod, ...) Anova.default(mod, test.statistic="F", ...)

Anova.coxme <- function(mod, type=c("II","III", 2, 3), test.statistic=c("Wald", "LR"), ...){
  type <- as.character(type)
  type <- match.arg(type)
  test.statistic <- match.arg(test.statistic)
  switch(type,
         II=switch(test.statistic,
                   LR=Anova_II_LR_coxme(mod, ...),
                   Wald=Anova.default(mod, type="II", test.statistic="Chisq", ...)),
         III=switch(test.statistic,
                    LR=stop("type-III LR tests not available for coxme models"),
                    Wald=Anova.default(mod, type="III", test.statistic="Chisq", ...)),
         "2"=switch(test.statistic,
                    LR=Anova_II_LR_coxme(mod, ...),
                    Wald=Anova.default(mod, type="II", test.statistic="Chisq", ...)),
         "3"=switch(test.statistic,
                    LR=stop("type-III LR tests not available for coxme models"),
                    Wald=Anova.default(mod, type="III", test.statistic="Chisq")))
}

Anova_II_LR_coxme <- function(mod, ...){
  if (!requireNamespace("coxme")) stop("coxme package is missing")
  which.nms <- function(name) which(asgn == which(names == name))
  fac <-attr(terms(mod), "factors")
  names <- term.names(mod)
  n.terms <- length(names)
  if (n.terms < 2){
    return(anova(mod, test="Chisq"))
  }
  X <- model.matrix(mod)
  asgn <- attr(X, 'assign')
  p <- LR <- rep(0, n.terms)
  df <- df.terms(mod)
  random <- mod$formulaList$random
  random <- sapply(random, as.character)[2, ]
  random <- paste(paste0("(", random, ")"), collapse=" + ")
  fixed <- as.character(mod$formulaList$fixed)[3]
  for (term in 1:n.terms){
    rels <- names[relatives(names[term], names, fac)]
    formula <- paste0(". ~ . - ", paste(c(names[term], rels), collapse=" - "), " + ", random)
    mod.1 <- update(mod, as.formula(formula))
    loglik.1 <- logLik(mod.1, type="integrated")
    mod.2 <- if (length(rels) == 0) mod
    else {
      formula <- paste0(". ~ . - ", paste(rels, collapse=" - "), " + ", random)
      update(mod, as.formula(formula))
    }
    loglik.2 <- logLik(mod.2, type="integrated")
    LR[term] <- -2*(loglik.1 - loglik.2)
    p[term] <- pchisq(LR[term], df[term], lower.tail=FALSE)
  }
  result <- data.frame(LR, df, p)
  row.names(result) <- names
  names(result) <- c("LR Chisq", "Df", "Pr(>Chisq)")
  class(result) <- c("anova", "data.frame")
  attr(result, "heading") <- "Analysis of Deviance Table (Type II tests)"
  result
}

# the following unexported methods make Anova.default() and linearHypotheis.default() work with "svyolr" objects

assignVector.svyolr <- function(model, ...){
  m <- model.matrix(model)
  assign <- attr(m, "assign")
  assign[assign != 0]
}

coef.svyolr <- function(object, ...) NextMethod()

vcov.svyolr <- function(object, ...){
  nms <- names(coef(object))
  (object$var)[nms, nms]
}

# Anova() method for svycoxph objects, to prevent test="LR"

Anova.svycoxph <- function(mod, type=c("II", "III", 2, 3),
                           test.statistic="Wald", ...){
  test.statistic <- match.arg(test.statistic)
  type <- as.character(type)
  type <- match.arg(type)
  NextMethod(test.statistic=test.statistic, type=type, ...)
}

# Anova() methods for "clm" and "clmm" objects (ordinal package)
#   coef(), vcov(), and model.matrix() methods not exported

Anova.clm <- function(mod, ...){
  class(mod) <- c("clmAnova", class(mod))
  Anova.default(mod, ...)
}

coef.clmAnova <- function(object, ...) object$beta

vcov.clmAnova <- function(object, ...){
  coef.names <- names(coef(object))
  V <- NextMethod()
  V[coef.names, coef.names]
}

model.matrix.clmAnova <- function(object, ...){
  X <- NextMethod()
  X$X
}

Anova.clmm <- function(mod, ...){
  class(mod) <- c("clmmAnova", class(mod))
  Anova.default(mod, ...)
}


coef.clmmAnova <- function(object, ...) {
  names.thresholds <- colnames(object$Theta)
  coefs <- NextMethod()
  names.all <- names(coefs)
  names.fixed <- names.all[!names.all %in% names.thresholds]
  coefs[names.fixed]
}

vcov.clmmAnova <- function(object, ...){
  coef.names <- names(coef(object))
  V <- NextMethod() 
  V[coef.names, coef.names]
}

Try the car package in your browser

Any scripts or data that you put into this service are public.

car documentation built on Sept. 27, 2024, 9:06 a.m.