Description Usage Format Details Source References Examples
A Helicase Dependent Amplification (HDA) of Vimentin (Vim) was performed. The 'VideoScan' Platform (Roediger et al. (2013)) was used to monitor the amplification. The HDA was performed at 65 degrees Celsius. Three concentrations of input DNA (D1, D2, D3) were used.
1 |
A data frame with 301 observations on the following 5 variables.
Cycle
Cycles HDA measurements.
t.D1
Dilution 1, elapsed time during HDA in seconds.
MFI.D1
Dilution 1, fluorescence.
t.D2
Dilution 2, elapsed time during HDA in seconds.
MFI.D2
Dilution 2, fluorescence.
t.D3
Dilution 3, elapsed time during HDA in seconds.
MFI.D3
Dilution 3, fluorescence.
To perform an isothermal amplification in 'VideoScan', standard conditions for the IsoAmp(R) III Universal tHDA Kit (Biohelix) were used. Primers and templates are described in Roediger et al. (2013). The reaction was composed of reaction mix A)10 micro L A. bidest, 1.25 micro L 10xbuffer, 0.75 micro L primer(150nM final), 0.5 micro L template plasmid. Preincubation: This mixture was incubated for 2 min at 95 degree. Celsius and immediately placed on ice. Reaction mix B) 5 micro L A. bidest., 1.25 micro L 10x buffer, 2 micro L NaCl, 1.25 micro L MgSO4, 1.75 micro L dNTPs, 0.25 micro L EvaGreen, 1 micro L enzyme mix. The mix was covered with 50 micro L mineral oil. The fluorescence measurement in 'VideoScan' 'HCU' started directly after adding buffer B at 65 degrees Celsius. A 1x (D1), a 1:10 dilution (D2) and a 1:100 (D3) dilution were tested. Temperature profile (after Preincubation): - 60 seconds at 65 degrees Celsius - 11 seconds at 55 degrees Celsius && Measurement
Claudia Deutschmann & Stefan Roediger, BTU Cottbus - Senftenberg, Senftenberg, Germany
A Highly Versatile Microscope Imaging Technology Platform for the Multiplex Real-Time Detection of Biomolecules and Autoimmune Antibodies. S. Roediger, P. Schierack, A. Boehm, J. Nitschke, I. Berger, U. Froemmel, C. Schmidt, M. Ruhland, I. Schimke, D. Roggenbuck, W. Lehmann and C. Schroeder. Advances in Biochemical Bioengineering/Biotechnology. 133:33–74, 2013.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | data(C85)
# First example
plot(NA, NA, xlim = c(0,85), ylim = c(0,1), xlab = "Time [min]",
ylab = "Fluorescence", main = "HDA amplification")
points(C85[, 2]/60, C85[, 3], type = "b", col = 1, pch = 20)
points(C85[, 4]/60, C85[, 5], type = "b", col = 2, pch = 20)
points(C85[, 6]/60, C85[, 7], type = "b", col = 3, pch = 20)
legend(40, 0.5, c("D1, 1x", "D2, 1:10", "D3, 1:100"), col = c(1:3),
pch = rep(20,3))
# Second example
plot(NA, NA, xlim = c(0,30), ylim = c(0,0.8), xlab = "Time [min]",
ylab = "Fluorescence", main = "HDA amplification")
points(C85[, 2]/60, C85[, 3], type = "b", col = 1, pch = 20)
points(C85[, 2]/60, smoother(C85[, 2]/60, C85[, 3],
method = list("savgol")), type = "b", col = 2, pch = 20)
points(C85[, 2]/60, smoother(C85[, 2]/60, C85[, 3],
method = list("smooth")), type = "b", col = 3, pch = 20)
points(C85[, 2]/60, smoother(C85[, 2]/60, C85[, 3],
method = list("mova")), type = "b", col = 4, pch = 20)
legend(1, 0.8, c("D1, raw", "D1, savgol", "D1, smooth", "D1, mova"),
col = c(1:4), pch = rep(20,4))
# Third example
# Comparison of Lowess, Moving average and splines to smooth amplification
# curve data of
# a HDA using the 'VideoScan' 'HCU' for amplification and monitoring.
xrange <- 2:2400
plot(NA, NA, xlim = c(0,85), ylim = c(0.4, 0.8), xlab = "Time [min]",
ylab = "RFI", main = "Raw data")
points(C85[, 2]/60, C85[, 3], type = "b", col = 1, pch = 20)
points(C85[, 4]/60, C85[, 5], type = "b", col = 2, pch = 20)
points(C85[, 6]/60, C85[, 7], type = "b", col = 3, pch = 20)
legend("topleft", c("D1, 1x", "D2, 1:10", "D3, 1:100"), col = c(1:3),
pch = rep(20,3))
mtext("A", cex = 2, side = 3, adj = 0, font = 2)
plot(NA, NA, xlim = c(0,40), ylim = c(-0.05, 0.3), xlab = "Time [min]",
ylab = "RFI", main = "Moving average")
movaww <- seq(1,17,4)
for (i in 1:length(movaww)) {
for (j in c(2,4,6)) {
tmp <- data.frame(na.omit(C85[xrange, j])/60, na.omit(C85[xrange, j + 1]))
tmp.out <- smoother(tmp[, 1], tmp[, 2], method = list(mova = list(movaww = movaww[i])),
bg.outliers = TRUE)
lines(data.frame(tmp[, 1], tmp.out), type = "l", pch = 20, cex = 0.5,
col = i)
}
}
mtext("B", cex = 2, side = 3, adj = 0, font = 2)
legend("topleft", c("D1, 1x", "D2, 1:10", "D3, 1:100"), col = c(1:3),
pch = rep(20,3))
legend("bottomright", 6, paste("movaww : ", movaww), pch = 20, lwd = 2,
col = 1:length(movaww))
plot(NA, NA, xlim = c(0,40), ylim = c(-0.05, 0.3), xlab = "Time [min]",
ylab = "RFI", main = "Cubic Spline")
df.fact <- seq(0.5,0.9,0.1)
for (i in 1:length(df.fact)) {
for (j in c(2,4,6)) {
tmp <- data.frame(na.omit(C85[xrange, j])/60, na.omit(C85[xrange, j + 1]))
tmp.out <- smoother(tmp[, 1], tmp[, 2],
method = list(smooth = list(df.fact = df.fact[i])),
bg.outliers = TRUE)
lines(data.frame(tmp[, 1], tmp.out), type = "l", pch = 20,
cex = 0.5, col = i)
}
}
mtext("C", cex = 2, side = 3, adj = 0, font = 2)
legend("topleft", c("D1, 1x", "D2, 1:10", "D3, 1:100"), col = c(1:3),
pch = rep(20,3))
legend("bottomright", paste("df.fact : ", df.fact), pch = 20, lwd = 2,
col = 1:length(df.fact))
plot(NA, NA, xlim = c(0,40), ylim = c(-0.05, 0.3), xlab = "Time [min]",
ylab = "RFI", main = "Lowess")
f <- seq(0.01,0.2,0.04)
for (i in 1:length(f)) {
for (j in c(2,4,6)) {
tmp <- data.frame(na.omit(C85[xrange, j])/60, na.omit(C85[xrange, j + 1]))
tmp.out <- smoother(tmp[, 1], tmp[, 2], method = list(lowess = list(f = f[i])),
bg.outliers = TRUE)
lines(data.frame(tmp[, 1], tmp.out), type = "l", pch = 20, cex = 0.5,
col = i)
}
}
mtext("D", cex = 2, side = 3, adj = 0, font = 2)
legend("topleft", c("D1, 1x", "D2, 1:10", "D3, 1:100"), col = c(1:3),
pch = rep(20,3))
legend("bottomright", paste("f : ", f), pch = 20, lwd = 2, col = 1:length(f))
plot(NA, NA, xlim = c(0,40), ylim = c(-0.05, 0.3), xlab = "Time [min]",
ylab = "RFI", main = "Friedman's\n''super smoother''")
span <- seq(0.01,0.05,0.01)
for (i in 1:length(span)) {
for (j in c(2,4,6)) {
tmp <- data.frame(na.omit(C85[xrange, j])/60, na.omit(C85[xrange, j + 1]))
tmp.out <- smoother(tmp[, 1], tmp[, 2], method = list(supsmu = list(span = span[i])),
bg.outliers = TRUE)
lines(data.frame(tmp[, 1], tmp.out), type = "l", pch = 20, cex = 0.5,
col = i)
}
}
mtext("E", cex = 2, side = 3, adj = 0, font = 2)
legend("topleft", c("D1, 1x", "D2, 1:10", "D3, 1:100"), col = c(1:3),
pch = rep(20,3))
legend("bottomright", paste("span : ", span), pch = 20, lwd = 2, col = 1:length(span))
plot(NA, NA, xlim = c(0,40), ylim = c(-0.05, 0.3), xlab = "Time [min]",
ylab = "RFI", main = "Savitzky-Golay")
for (j in c(2,4,6)) {
tmp <- data.frame(na.omit(C85[xrange, j])/60, na.omit(C85[xrange, j + 1]))
tmp.out <- smoother(tmp[, 1], tmp[, 2], method = list("savgol"),
bg.outliers = TRUE)
lines(data.frame(tmp[, 1], tmp.out), type = "l", pch = 20, cex = 0.5,
col = 1)
}
mtext("F", cex = 2, side = 3, adj = 0, font = 2)
legend("bottomright", paste("/ : ", NULL), pch = 20, lwd = 2, col = 1:length(span))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.