capillaryPCR: capillary convective PCR

Description Usage Format Details Source References Examples

Description

The capillary convective PCR (ccPCR) is a modified device of the ccPCR system proposed by Chou et al. 2011.

Usage

1

Format

A data frame with 1844 observations on the following 10 variables.

t.121205

Elapsed time during amplification

ED.121205

a numeric vector

t.121128

Elapsed time during amplification

ED.121128

a numeric vector

t.121130.1

Elapsed time during amplification

ED.121130.1

a numeric vector

t.121130.2

Elapsed time during amplification

ED.121130.2

a numeric vector

t.121130.3

Elapsed time during amplification

ED.121130.3

a numeric vector

Details

Modified version of the capillary convective tube isothermal heater heater by Chou et al. 2011. As heating system a conventional block heat was used. On the top of the heating block, we placed for the uptake of the capillaries an aluminum block (8 mm height) in which four holes (3.2 mm diameter and 3.0 mm depth with round shaped bottom) were drilled. The capillaries are regular 100 micro L Roche LightCycler(R). These glass capillaries have a round shaped closed bottom (2.3 mm inner diameter and 3.2 mm outer diameter). An "ESE-Log" detector (QIAGEN Lake Constance) was used for the real time fluorescent measurements, which was mounted in a distance of 5-10 mm next to the capillary. The PCR was performed with SYBR(R) Green fluorescent intercalating dye. Thereof the ESE-Log has in one channel the excitation at 470 nm and the detection at 520 nm. The data was recorded by the FL Digital Software (QIAGEN Lake Constance) and the exported text based raw data.

Source

Ralf Himmelreich, IMM, Mainz, Germany

References

Chou, W., Chen, P., Miao Jr, M., Kuo, L., Yeh, S. and Chen, P. (2011). Rapid DNA amplification in a capillary tube by natural convection with a single isothermal heater. Biotech. 50, 52-57.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
default.par <- par(no.readonly = TRUE)
# First example
data(capillaryPCR)
plot(NA, NA, xlim = c(0,80), ylim = c(0,1300), xlab = "Time [min]", 
     ylab = "Voltage [micro V]", main = "ccPCR - Raw Data")

for (i in c(1,3,5,7)) {
  lines(capillaryPCR[, i], capillaryPCR[, i+1], type = "b", pch = 20) 
}

abline(h = 290, v = c(18, 23, 35))
legend(60,800, c("Run 1", "Run 2", "Run 3", "Control"), pch = 20, lwd = 2)
  
# Second example
par(mfrow = c(2,1))

type <- c("mova", "spline", "savgol")
plot(NA, NA, xlim = c(0,80), ylim = c(0,1100), xlab = "Time [min]", 
     ylab = "Voltage [micro V]", main = "ccPCR with mova, 
     spline and savgol")
for (i in 1:3) {
  for (j in c(1,3,5,7)) {
      tmp <- data.frame(na.omit(capillaryPCR[, j]), 
			na.omit(capillaryPCR[, j+1]))
      tmp.sm <- smoother(tmp[, 1], tmp[, 2], method = list(type[i]))
      lines(data.frame(tmp[, 1], tmp.sm), type = "b", pch = 20, cex = 0.5, 
	    col = i)
  }
}

abline(h = 200, v = c(17.5, 21.3, 32.9))
legend(0, 1000, c("mova", "spline", "savgol"), pch = 20, lwd = 2, 
	col = c(1:3))
  
plot(NA, NA, xlim = c(10,40), ylim = c(50,300), xlab = "Time [min]", 
     ylab = "Voltage [micro V]", main = "ccPCR with mova, 
     spline and savgol")
for (i in 1:3) {
  for (j in c(1,3,5,7)) {
      tmp <- data.frame(na.omit(capillaryPCR[, j]), 
			na.omit(capillaryPCR[, j+1]))
      tmp.sm <- smoother(tmp[, 1], tmp[, 2], method = list(type[i]))
      lines(data.frame(tmp[, 1], tmp.sm), type = "b", pch = 20, cex = 0.5, 
	    col = i)
  }
}
abline(h = 200, v = c(17.5, 21.3, 32.9))
legend(10, 300, c("mova", "spline", "savgol"), pch = 20, lwd = 2, 
	col = c(1:3))

par(mfrow = c(1,1))

# Third example
method <- c("lowess","mova","savgol","smooth","spline", "supsmu")

plot(NA, NA, xlim = c(0,100), ylim = c(-50,1100), xlab = "Time [min]", 
     ylab = "Voltage [micro V]", main = "capillary convective PCR")
for (i in 1:length(method)) {
  for (j in c(1,3,5,7)) {
      tmp <- data.frame(na.omit(capillaryPCR[, j]), 
			na.omit(capillaryPCR[, j+1]))
      tmp.sm <- smoother(tmp[, 1], tmp[, 2], method = list(method[i]))
      lines(data.frame(tmp[, 1], tmp.sm), type = "l", pch = 20, cex = 0.5, 
	    col = i)
  }
}
legend(0,1000, method, pch = 20, lwd = 2, col = 1:length(method))


par(fig = c(0.5,1,0.25,0.8), new = TRUE)
plot(NA, NA, xlim = c(10,40), ylim = c(50,300), xlab = "Time [min]", 
     ylab = "Voltage [micro V]", main = "")
for (i in 1:length(method)) {
  for (j in c(1,3,5,7)) {
      tmp <- data.frame(na.omit(capillaryPCR[, j]), 
			na.omit(capillaryPCR[, j+1]))
      tmp.sm <- smoother(tmp[, 1], tmp[, 2], method = list(method[i]))
      lines(data.frame(tmp[, 1], tmp.sm), type = "l", pch = 20, cex = 0.5, 
	    col = i)
  }
}
legend(0,1000, method, pch = 20, lwd = 2, col = 1:length(method))

# Fourth example
# Comparison of Lowess, Moving average and splines to smooth amplification 
# curve data of
# a capillary convective PCR.

plot(NA, NA, xlim = c(10,40), ylim = c(50, 300), xlab = "Time [min]", 
     ylab = "Voltage [micro V]", main = "ccPCR - Moving average")
movaww <- seq(1,17,4)
for (i in 1:length(movaww)) {
  for (j in c(1,3,5,7)) {
	    tmp <- data.frame(na.omit(capillaryPCR[, j]), 
			      na.omit(capillaryPCR[, j+1]))
	    tmp.out <- smoother(tmp[, 1], tmp[, 2], 
                 method = list(mova = list(movaww = movaww[i])))
	    
	    lines(data.frame(tmp[, 1], tmp.out), type = "l", pch = 20, 
		  cex = 0.5, col = i)
  }
}
text(10,300, "A)", cex = 3)
legend(25,200, paste("movaww : ", movaww), pch = 20, lwd = 2, 
	col = 1:length(movaww))

plot(NA, NA, xlim = c(10,40), ylim = c(50, 300), xlab = "Time [min]", 
     ylab = "Voltage [micro V]", main = "ccPCR - Cubic Spline")
df.fact <- seq(0.5,0.9,0.1)
for (i in 1:length(df.fact)) {
  for (j in c(1,3,5,7)) {
    tmp <- data.frame(na.omit(capillaryPCR[, j]), 
		      na.omit(capillaryPCR[, j+1]))
    tmp.out <- smoother(tmp[, 1], tmp[, 2], method = list(smooth = 
    list(df.fact = df.fact[i])))
   
    lines(data.frame(tmp[, 1], tmp.out), type = "l", pch = 20, 
		  cex = 0.5, col = i)
  }
}
text(10,300, "B)", cex = 3)
legend(30,200, paste("df.fact : ", df.fact), pch = 20, lwd = 2, 
	col = 1:length(df.fact))
	

plot(NA, NA, xlim = c(10,40), ylim = c(50, 300), xlab = "Time [min]", 
     ylab = "Voltage [micro V]", main = "ccPCR - Lowess")
f <- seq(0.01,0.2,0.04)
for (i in 1:length(f)) {
  for (j in c(1,3,5,7)) {
	    tmp <- data.frame(na.omit(capillaryPCR[, j]), 
			      na.omit(capillaryPCR[, j+1]))
	    tmp.out <- smoother(tmp[, 1], tmp[, 2], method = list(lowess = list(f = f[i])))
	    
	    lines(data.frame(tmp[, 1], tmp.out), type = "l", pch = 20, 
		  cex = 0.5, col = i)
  }
}
text(10,300, "C)", cex = 3)
legend(30,200,  paste("f : ", f), pch = 20, lwd = 2, col = 1:length(f))

plot(NA, NA, xlim = c(10,40), ylim = c(50, 300), xlab = "Time [min]", 
     ylab = "Voltage [micro V]", 
     main = "ccPCR - Friedman's ''super smoother''")
span <- seq(0.01,0.05,0.01)
for (i in 1:length(span)) {
  for (j in c(1,3,5,7)) {
	    tmp <- data.frame(na.omit(capillaryPCR[, j]), 
			      na.omit(capillaryPCR[, j+1]))
	    tmp.out <- smoother(tmp[, 1], tmp[, 2], 
                 method = list(supsmu = list(span = span[i])))
	    
	    lines(data.frame(tmp[, 1], tmp.out), type = "l", pch = 20, 
		  cex = 0.5, col = i)
  }
}
text(10,300, "D)", cex = 3)
legend(25,200,  paste("span : ", f), pch = 20, lwd = 2, col = 1:length(span))

par(default.par)

chipPCR documentation built on March 5, 2021, 9:06 a.m.