Description Usage Format Details Source References Examples
The capillary convective PCR (ccPCR) is a modified device of the ccPCR system proposed by Chou et al. 2011.
1 |
A data frame with 1844 observations on the following 10 variables.
t.121205
Elapsed time during amplification
ED.121205
a numeric vector
t.121128
Elapsed time during amplification
ED.121128
a numeric vector
t.121130.1
Elapsed time during amplification
ED.121130.1
a numeric vector
t.121130.2
Elapsed time during amplification
ED.121130.2
a numeric vector
t.121130.3
Elapsed time during amplification
ED.121130.3
a numeric vector
Modified version of the capillary convective tube isothermal heater heater by Chou et al. 2011. As heating system a conventional block heat was used. On the top of the heating block, we placed for the uptake of the capillaries an aluminum block (8 mm height) in which four holes (3.2 mm diameter and 3.0 mm depth with round shaped bottom) were drilled. The capillaries are regular 100 micro L Roche LightCycler(R). These glass capillaries have a round shaped closed bottom (2.3 mm inner diameter and 3.2 mm outer diameter). An "ESE-Log" detector (QIAGEN Lake Constance) was used for the real time fluorescent measurements, which was mounted in a distance of 5-10 mm next to the capillary. The PCR was performed with SYBR(R) Green fluorescent intercalating dye. Thereof the ESE-Log has in one channel the excitation at 470 nm and the detection at 520 nm. The data was recorded by the FL Digital Software (QIAGEN Lake Constance) and the exported text based raw data.
Ralf Himmelreich, IMM, Mainz, Germany
Chou, W., Chen, P., Miao Jr, M., Kuo, L., Yeh, S. and Chen, P. (2011). Rapid DNA amplification in a capillary tube by natural convection with a single isothermal heater. Biotech. 50, 52-57.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | default.par <- par(no.readonly = TRUE)
# First example
data(capillaryPCR)
plot(NA, NA, xlim = c(0,80), ylim = c(0,1300), xlab = "Time [min]",
ylab = "Voltage [micro V]", main = "ccPCR - Raw Data")
for (i in c(1,3,5,7)) {
lines(capillaryPCR[, i], capillaryPCR[, i+1], type = "b", pch = 20)
}
abline(h = 290, v = c(18, 23, 35))
legend(60,800, c("Run 1", "Run 2", "Run 3", "Control"), pch = 20, lwd = 2)
# Second example
par(mfrow = c(2,1))
type <- c("mova", "spline", "savgol")
plot(NA, NA, xlim = c(0,80), ylim = c(0,1100), xlab = "Time [min]",
ylab = "Voltage [micro V]", main = "ccPCR with mova,
spline and savgol")
for (i in 1:3) {
for (j in c(1,3,5,7)) {
tmp <- data.frame(na.omit(capillaryPCR[, j]),
na.omit(capillaryPCR[, j+1]))
tmp.sm <- smoother(tmp[, 1], tmp[, 2], method = list(type[i]))
lines(data.frame(tmp[, 1], tmp.sm), type = "b", pch = 20, cex = 0.5,
col = i)
}
}
abline(h = 200, v = c(17.5, 21.3, 32.9))
legend(0, 1000, c("mova", "spline", "savgol"), pch = 20, lwd = 2,
col = c(1:3))
plot(NA, NA, xlim = c(10,40), ylim = c(50,300), xlab = "Time [min]",
ylab = "Voltage [micro V]", main = "ccPCR with mova,
spline and savgol")
for (i in 1:3) {
for (j in c(1,3,5,7)) {
tmp <- data.frame(na.omit(capillaryPCR[, j]),
na.omit(capillaryPCR[, j+1]))
tmp.sm <- smoother(tmp[, 1], tmp[, 2], method = list(type[i]))
lines(data.frame(tmp[, 1], tmp.sm), type = "b", pch = 20, cex = 0.5,
col = i)
}
}
abline(h = 200, v = c(17.5, 21.3, 32.9))
legend(10, 300, c("mova", "spline", "savgol"), pch = 20, lwd = 2,
col = c(1:3))
par(mfrow = c(1,1))
# Third example
method <- c("lowess","mova","savgol","smooth","spline", "supsmu")
plot(NA, NA, xlim = c(0,100), ylim = c(-50,1100), xlab = "Time [min]",
ylab = "Voltage [micro V]", main = "capillary convective PCR")
for (i in 1:length(method)) {
for (j in c(1,3,5,7)) {
tmp <- data.frame(na.omit(capillaryPCR[, j]),
na.omit(capillaryPCR[, j+1]))
tmp.sm <- smoother(tmp[, 1], tmp[, 2], method = list(method[i]))
lines(data.frame(tmp[, 1], tmp.sm), type = "l", pch = 20, cex = 0.5,
col = i)
}
}
legend(0,1000, method, pch = 20, lwd = 2, col = 1:length(method))
par(fig = c(0.5,1,0.25,0.8), new = TRUE)
plot(NA, NA, xlim = c(10,40), ylim = c(50,300), xlab = "Time [min]",
ylab = "Voltage [micro V]", main = "")
for (i in 1:length(method)) {
for (j in c(1,3,5,7)) {
tmp <- data.frame(na.omit(capillaryPCR[, j]),
na.omit(capillaryPCR[, j+1]))
tmp.sm <- smoother(tmp[, 1], tmp[, 2], method = list(method[i]))
lines(data.frame(tmp[, 1], tmp.sm), type = "l", pch = 20, cex = 0.5,
col = i)
}
}
legend(0,1000, method, pch = 20, lwd = 2, col = 1:length(method))
# Fourth example
# Comparison of Lowess, Moving average and splines to smooth amplification
# curve data of
# a capillary convective PCR.
plot(NA, NA, xlim = c(10,40), ylim = c(50, 300), xlab = "Time [min]",
ylab = "Voltage [micro V]", main = "ccPCR - Moving average")
movaww <- seq(1,17,4)
for (i in 1:length(movaww)) {
for (j in c(1,3,5,7)) {
tmp <- data.frame(na.omit(capillaryPCR[, j]),
na.omit(capillaryPCR[, j+1]))
tmp.out <- smoother(tmp[, 1], tmp[, 2],
method = list(mova = list(movaww = movaww[i])))
lines(data.frame(tmp[, 1], tmp.out), type = "l", pch = 20,
cex = 0.5, col = i)
}
}
text(10,300, "A)", cex = 3)
legend(25,200, paste("movaww : ", movaww), pch = 20, lwd = 2,
col = 1:length(movaww))
plot(NA, NA, xlim = c(10,40), ylim = c(50, 300), xlab = "Time [min]",
ylab = "Voltage [micro V]", main = "ccPCR - Cubic Spline")
df.fact <- seq(0.5,0.9,0.1)
for (i in 1:length(df.fact)) {
for (j in c(1,3,5,7)) {
tmp <- data.frame(na.omit(capillaryPCR[, j]),
na.omit(capillaryPCR[, j+1]))
tmp.out <- smoother(tmp[, 1], tmp[, 2], method = list(smooth =
list(df.fact = df.fact[i])))
lines(data.frame(tmp[, 1], tmp.out), type = "l", pch = 20,
cex = 0.5, col = i)
}
}
text(10,300, "B)", cex = 3)
legend(30,200, paste("df.fact : ", df.fact), pch = 20, lwd = 2,
col = 1:length(df.fact))
plot(NA, NA, xlim = c(10,40), ylim = c(50, 300), xlab = "Time [min]",
ylab = "Voltage [micro V]", main = "ccPCR - Lowess")
f <- seq(0.01,0.2,0.04)
for (i in 1:length(f)) {
for (j in c(1,3,5,7)) {
tmp <- data.frame(na.omit(capillaryPCR[, j]),
na.omit(capillaryPCR[, j+1]))
tmp.out <- smoother(tmp[, 1], tmp[, 2], method = list(lowess = list(f = f[i])))
lines(data.frame(tmp[, 1], tmp.out), type = "l", pch = 20,
cex = 0.5, col = i)
}
}
text(10,300, "C)", cex = 3)
legend(30,200, paste("f : ", f), pch = 20, lwd = 2, col = 1:length(f))
plot(NA, NA, xlim = c(10,40), ylim = c(50, 300), xlab = "Time [min]",
ylab = "Voltage [micro V]",
main = "ccPCR - Friedman's ''super smoother''")
span <- seq(0.01,0.05,0.01)
for (i in 1:length(span)) {
for (j in c(1,3,5,7)) {
tmp <- data.frame(na.omit(capillaryPCR[, j]),
na.omit(capillaryPCR[, j+1]))
tmp.out <- smoother(tmp[, 1], tmp[, 2],
method = list(supsmu = list(span = span[i])))
lines(data.frame(tmp[, 1], tmp.out), type = "l", pch = 20,
cex = 0.5, col = i)
}
}
text(10,300, "D)", cex = 3)
legend(25,200, paste("span : ", f), pch = 20, lwd = 2, col = 1:length(span))
par(default.par)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.