Nothing
## ----eval=FALSE, warning=FALSE, message=FALSE---------------------------------
# library(dowser)
#
# # load example AIRR tsv data
# data(ExampleAirr)
#
# # Process example data using default settings
# clones = formatClones(ExampleAirr, traits="timepoint", minseq=3)
#
# # Column shows timepoints in dataset
# print(table(ExampleAirr$timepoint))
# #0 7 14
# #62 102 225
#
# # Calculate number of tissues sampled in tree
# timepoints = unlist(lapply(clones$data, function(x)
# length(unique(x@data$timepoint))))
#
# # Filter to multi-type trees
# clones = clones[timepoints > 1,]
#
# # Build trees using maximum likelihood (can use alternative builds if desired)
# trees = getTrees(clones, build="pml")
#
## ----eval=FALSE, warning=FALSE, message=FALSE---------------------------------
#
# # correlation test with 10000 repetitions
# test = correlationTest(trees, permutations=10000, time="timepoint")
# print(test)
#
# # A tibble: 6 × 12
# # clone_id data locus seqs trees slope p corre…¹ random…² min_p
# # <dbl> <list> <chr> <int> <list> <dbl> <dbl> <dbl> <dbl> <dbl>
# #1 3128 <airrClon> N 40 <phylo> -0.00205 0.859 -0.173 -0.0257 0.0667
# #2 3184 <airrClon> N 12 <phylo> 0.00111 0.497 0.649 -0.00429 0.5
# #3 3140 <airrClon> N 9 <phylo> 0.00156 0.335 0.630 -0.00835 0.333
# #4 3192 <airrClon> N 9 <phylo> 0.00739 0.498 0.956 -0.00306 0.5
# #5 3115 <airrClon> N 6 <phylo> 0.00159 0.244 0.565 0.00236 0.25
# #6 3139 <airrClon> N 6 <phylo> 0.00308 0.507 0.821 0.0112 0.5
#
#
# # use uniform correlaion test (more sensitive, but higher false positive rate)
# utest = correlationTest(trees, permutations=10000, time="timepoint", perm_type="uniform")
# print(utest)
#
# # A tibble: 6 × 12
# # clone_id data locus seqs trees slope p correlation random_c…¹
# # <dbl> <list> <chr> <int> <list> <dbl> <dbl> <dbl> <dbl>
# #1 3128 <airrClon> N 40 <phylo> -0.00205 0.856 -0.173 0.00146
# #2 3184 <airrClon> N 12 <phylo> 0.00111 0.0768 0.649 -0.00223
# #3 3140 <airrClon> N 9 <phylo> 0.00156 0.114 0.630 0.00205
# #4 3192 <airrClon> N 9 <phylo> 0.00739 0.110 0.956 0.000223
# #5 3115 <airrClon> N 6 <phylo> 0.00159 0.336 0.565 0.00409
# #6 3139 <airrClon> N 6 <phylo> 0.00308 0.172 0.821 0.00431
#
#
## ----eval=FALSE, warning=FALSE, message=FALSE---------------------------------
# library(ggtree)
#
# # order trees by p value
# test = test[order(test$p),]
#
# # Plot times on tree with lowest p value (not convincingly evolving)
# plotTrees(test)[[1]] +
# geom_tippoint(aes(fill=timepoint), pch=21, size=2) +
# scale_fill_distiller(palette="RdYlBu")
## ----eval=TRUE, echo=FALSE, warning=FALSE, message=FALSE----------------------
library(dowser)
data(TimeTrees)
TimeTrees = TimeTrees[order(TimeTrees$p),]
plotTrees(TimeTrees)[[1]] +
ggtree::geom_tippoint(aes(fill=timepoint), pch=21, size=2) +
scale_fill_distiller(palette="RdYlBu")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.