Nothing
# Generator function of class basisfd
basisfd <- function(type, rangeval, nbasis, params, dropind=vector("list",0),
quadvals=vector("list",0), values=vector("list",0),
basisvalues=vector("list",0))
{
# BASISFD generator function of "basisfd" class.
# Arguments:
# TYPE ...a string indicating the type of basisobj.
# This may be one of:
# "Bspline", "bspline", "Bsp", "bsp",
# "con", "const", "constant"
# "exp", "exponen", "exponential"
# "fdVariance"
# "FEM"
# "Fourier", "fourier", "Fou", "fou",
# "mon", "monom", "monomial",
# "polyg", "polygon", "polygonal"
# "power" "pow"
# RANGEVAL...an array of length 2 containing the lower and upper
# boundaries for (the rangeval of argument values
# If basis is of FEM type, rangeval is not used
# NBASIS ... the number of basis functions
# PARAMS ... If the basis is "fourier", this is a single number indicating
# the period. That is, the basis functions are periodic on
# the interval (0,PARAMS) or any translation of it.
# If the basis is "bspline", the values are interior points at
# which the piecewise polynomials join.
# Note that the number of basis functions NBASIS is equal
# to the order of the Bspline functions plus the number of
# interior knots, that is the length of PARAMS.
# This means that NBASIS must be at least 1 larger than the
# length of PARAMS.
# DROPIND...A set of indices in 1:NBASIS of basis functions to drop when
# basis objects are arguments. Default is vector("list",0)
# Note that argument NBASIS is reduced by the number of
# indices, and the derivative matrices in VALUES are also clipped.
# QUADVALS...A NQUAD by 2 matrix. The firs t column contains quadrature
# points to be used in a fixed point quadrature. The second
# contains quadrature weights. For example, for (Simpson"s
# rule for (NQUAD = 7, the points are equally spaced and the
# weights are delta.*[1, 4, 2, 4, 2, 4, 1]/3. DELTA is the
# spacing between quadrature points. The default is
# matrix("numeric",0,0).
# VALUES ...A list, with entries containing the values of
# the basis function derivatives starting with 0 and
# going up to the highest derivative needed. The values
# correspond to quadrature points in QUADVALS and it is
# up to the user to decide whether or not to multiply
# the derivative values by the square roots of the
# quadrature weights so as to make numerical integration
# a simple matrix multiplication.
# Values are checked against QUADVALS to ensure the correct
# number of rows, and against NBASIS to ensure the correct
# number of columns.
# The default value of is VALUES is vector("list",0).
# VALUES contains values of basis functions and derivatives at
# quadrature points weighted by square root of quadrature weights.
# These values are only generated as required, and only if slot
# QUADVALS is not matrix("numeric",0,0).
# BASISVALUES...A vector of lists, allocated by code such as
# vector("list",1).
# This field is designed to avoid evaluation of a
# basis system repeatedly at a set of argument values.
# Each list within the vector corresponds to a specific set
# of argument values, and must have at least two components,
# which may be tagged as you wish.
# The first component in an element of the list vector contains the
# argument values.
# The second component in an element of the list vector
# contains a matrix of values of the basis functions evaluated
# at the arguments in the first component.
# The third and subsequent components, if present, contain
# matrices of values their derivatives up to a maximum
# derivative order.
# Whenever function getbasismatrix is called, it checks
# the first list in each row to see, first, if the number of
# argument values corresponds to the size of the first dimension,
# and if this test succeeds, checks that all of the argument
# values match. This takes time, of course, but is much
# faster than re-evaluation of the basis system. Even this
# time can be avoided by direct retrieval of the desired
# array.
# For example, you might set up a vector of argument values
# called "evalargs" along with a matrix of basis function
# values for these argument values called "basismat".
# You might want too use tags like "args" and "values",
# respectively for these. You would then assign them
# to BASISVALUES with code such as
# basisobj$basisvalues <- vector("list",1)
# basisobj$basisvalues[[1]] <-
# list(args=evalargs, values=basismat)
#
# Returns
# BASISOBJ ... a basisfd object with slots
# type
# rangeval
# nbasis
# params
# dropind
# quadvals
# values
# basisvalues
# Slot VALUES contains values of basis functions and derivatives at
# quadrature points weighted by square root of quadrature weights.
# These values are only generated as required, and only if slot
# quadvals is not empty.
#
# An alternative name for (this function is CREATE.BASIS, but PARAMS argument
# must be supplied.
# Specific types of bases may be set up more conveniently using functions
# CREATE.BSPLINE.BASIS ... creates a b-spline basis
# CREATE.CONSTANT.BASIS ... creates a constant basis
# CREATE.EXPONENTIAL.BASIS ... creates an exponential basis
# CREATE.FDVARIANCE.BASIS ... creates an fdVariance basis
# CREATE.FEM.BASIS ... creates an FEM basis
# CREATE.FOURIER.BASIS ... creates a fourier basis
# CREATE.MONOMIAL.BASIS ... creates a monomial basis
# CREATE.POLYGON.BASIS ... creates a polygonal basis
# CREATE.POLYNOMIAL.BASIS ... creates a polynomial basis
# CREATE.POWER.BASIS ... creates a monomial basis
# Last modified 3 January 2020 by Jim Ramsay
# value -> values 2012.12.27 by spencer graves
# Set up default basis if there are no arguments:
# order 2 monomial basis over [0,1]
if (nargs()==0) {
type <- "bspline"
rangeval <- c(0,1)
nbasis <- 2
params <- vector("list",0)
dropind <- vector("list",0)
quadvals <- vector("list",0)
values <- vector("list",0)
basisvalues <- vector("list",0)
basisobj <- list(type=type, rangeval=rangeval, nbasis=nbasis,
params=params, dropind=dropind, quadvals=quadvals,
values=values, basisvalues=basisvalues)
oldClass(basisobj) <- "basisfd"
return(basisobj)
}
# if first argument is a basis object, return
if (inherits(type,"basisfd")) {
basisobj <- type
return(basisobj)
}
# check basistype
# type <- moreNames(type)
# recognize type of basis by use of several variant spellings
if(type == "bspline" ||
type == "Bspline" ||
type == "spline" ||
type == "Bsp" ||
type == "bsp") {
type = "bspline"
}
else if(type == "con" ||
type == "const" ||
type == "constant") {
type = "const"
}
else if(type == "exp" ||
type == "expon" ||
type == "exponential") {
type = "expon"
}
else if(type == "fdVariance" ||
type == "fdVar") {
type = "fdVariance"
}
else if(type == "FEM") {
type = "FEM"
}
else if(type == "Fourier" ||
type == "fourier" ||
type == "Fou" ||
type == "fou") {
type = "fourier"
}
else if(type == "mon" ||
type == "monom" ||
type == "monomial") {
type = "monom"
}
else if(type == "polyg" ||
type == "polygon" ||
type == "polygonal") {
type = "polygonal"
}
else if(type == "polynomial" ||
type == "polynom") {
type = "polynomial"
}
else if(type == "pow" ||
type == "power") {
type = "power"
}
else {
type = "unknown"
}
if (type=="unknown"){
stop("'type' unrecognizable.")
}
# check rangeval if the object is not of type FEM
if (!type == "FEM") {
rangeval = as.vector(rangeval)
if (!is.numeric(rangeval)) stop("Argument rangeval is not numeric.")
if (length(rangeval) != 2) stop("Argument rangeval is not of length 2.")
if (!(rangeval[2] > rangeval[1]))
stop("Argument rangeval is not strictly increasing.")
}
# check nbasis
if (nbasis <= 0) stop("Argument nbasis is not positive.")
if (round(nbasis) != nbasis) stop("Argument nbasis is not an integer.")
# check if QUADVALS is present, and set to default if not
if (missing(quadvals)) quadvals <- vector("list",0)
else if(!(length(quadvals) == 0 || is.null(quadvals))){
nquad <- dim(quadvals)[1]
ncol <- dim(quadvals)[2]
if ((nquad == 2) && (ncol > 2)){
quadvals <- t(quadvals)
nquad <- dim(quadvals)[1]
ncol <-dim(quadvals)[2]
}
if (nquad < 2) stop("Less than two quadrature points are supplied.")
if (ncol != 2) stop("'quadvals' does not have two columns.")
}
# check VALUES is present, and set to a single empty list if not.
if(!(length(values) == 0 || missing(values) || is.null(values))) {
n <- dim(values)[1]
k <- dim(values)[2]
if (n != nquad)
stop(paste("Number of rows in 'values' not equal to number of",
"quadrature points."))
if (k != nbasis)
stop(paste("Number of columns in 'values' not equal to number of",
"basis functions."))
}
else values <- vector("list",0)
# check BASISVALUES is present, and set to vector("list",0) if not.
# If present, it must be a two-dimensional list created by a command like
# listobj <- matrix("list", 2, 3)
if(!(length(basisvalues) == 0 || missing(basisvalues) || !is.null(basisvalues))) {
if (!is.list(basisvalues)) stop("BASISVALUES is not a list object.")
sizevec <- dim(basisvalues)
if (length(sizevec) != 2) stop("BASISVALUES is not 2-dimensional.")
for (i in 1:sizevec[1]) {
if (length(basisvalues[[i,1]]) != dim(basisvalues[[i,2]])[1]) stop(
paste("Number of argument values not equal number",
"of values."))
}
}
else basisvalues <- vector("list",0)
# check if DROPIND is present, and set to default if not
if(missing(dropind)) dropind <- vector("list",0)
if (length(dropind) > 0) {
# check DROPIND
ndrop = length(dropind)
if (ndrop >= nbasis) stop('Too many index values in DROPIND.')
dropind = sort(dropind)
if (ndrop > 1 && any(diff(dropind)) == 0)
stop('Multiple index values in DROPIND.')
for (i in 1:ndrop) {
if (dropind[i] < 1 || dropind[i] > nbasis)
stop('A DROPIND index value is out of range.')
}
# drop columns from VALUES cells if present
nvalues = length(values)
if (nvalues > 0 && length(values[[1]] > 0)) {
for (ivalue in 1:nvalues) {
derivvals = values[[ivalue]]
derivvals = derivvals[,-dropind]
values[[ivalue]] = derivvals
}
}
}
# select the appropriate type and process
if (type=="fourier"){
paramvec <- rangeval[2] - rangeval[1]
period <- params[1]
if (period <= 0) stop("Period must be positive for (a Fourier basis")
params <- period
if ((2*floor(nbasis/2)) == nbasis) nbasis <- nbasis + 1
} else if(type=="bspline"){
if (!missing(params)){
nparams <- length(params)
if(nparams>0){
if (params[1] <= rangeval[1])
stop("Smallest value in BREAKS not within RANGEVAL")
if (params[nparams] >= rangeval[2])
stop("Largest value in BREAKS not within RANGEVAL")
}
}
} else if(type=="expon") {
if (length(params) != nbasis)
stop("No. of parameters not equal to no. of basis fns for (exponential basisobj$")
} else if(type=="fdVariance") {
if (length(params) != 2)
stop("No. of parameters not equal to 8 for (FEM basisobj$")
} else if(type=="FEM") {
# if (length(params) != 8)
# stop("No. of parameters not equal to 8 for (FEM basisobj$")
} else if(type=="polynomial") {
if (length(params) != nbasis)
stop("No. of parameters not equal to no. of basis fns for (polynomialal basisobj$")
} else if(type=="power") {
if (length(params) != nbasis)
stop("No. of parameters not equal to no. of basis fns for (power basisobj$")
} else if(type=="const") {
params <- 0
} else if(type=="monom") {
if (length(params) != nbasis)
stop("No. of parameters not equal to no. of basis fns for (monomial basisobj$")
} else if(type=="polygonal") {
if (length(params) != nbasis)
stop("No. of parameters not equal to no. of basis fns for polygonal basisobj$")
} else stop("Unrecognizable basis")
# Save call
obj.call <- match.call()
# S4 definition
# basisobj <- new("basisfd", call=obj.call, type=type, rangeval=rangeval,
# nbasis=nbasis, params=params, dropind=dropind,
# quadvals=quadvals, values=values, basisvalues=basisvalues)
# S3 definition
basisobj <- list(call=obj.call, type=type, rangeval=rangeval, nbasis=nbasis,
params=params, dropind=dropind, quadvals=quadvals,
values=values, basisvalues=basisvalues)
oldClass(basisobj) <- "basisfd"
basisobj
}
# --------------------------------------------------------------------------
# print for basisfd class
# --------------------------------------------------------------------------
print.basisfd <- function(x, ...)
{
# Last modified 3 January 2008 by Jim Ramsay
basisobj <- x
cat("\nBasis object:\n")
if (!inherits(basisobj, "basisfd"))
stop("Argument not a functional data object")
# print type
cat(paste("\n Type: ", basisobj$type,"\n"))
# print range
cat(paste("\n Range: ", basisobj$rangeval[1],
" to ", basisobj$rangeval[2],"\n"))
# return if a constant basis
if (basisobj$type == "const") {
return()
}
# print number of basis functions
cat(paste("\n Number of basis functions: ",
basisobj$nbasis, "\n"))
# print parameters according to type of basis
if (basisobj$type == "fourier")
cat(paste("\n Period: ",basisobj$params,"\n"))
if (basisobj$type == "bspline") {
norder <- basisobj$nbasis - length(basisobj$params)
cat(paste("\n Order of spline: ", norder, "\n"))
if (length(basisobj$params) > 0) {
print(" Interior knots")
print(basisobj$params)
} else {
print(" There are no interior knots.")
}
}
if (basisobj$type == "polyg") {
print(" Argument values")
print(basisobj$params)
}
if (basisobj$type == "expon") {
print(" Rate coefficients")
print(basisobj$params)
}
if (basisobj$type == "monom") {
print(" Exponents")
print(basisobj$params)
}
if (basisobj$type == "power") {
print(" Exponents")
print(basisobj$params)
}
# display indices of basis functions to be dropped
if (length(basisobj$dropind) > 0) {
print(" Indices of basis functions to be dropped")
print(basisobj$dropind)
}
}
# --------------------------------------------------------------------------
# summary for basisfd class
# --------------------------------------------------------------------------
summary.basisfd <- function(object, ...)
{
basisobj <- object
cat("\nBasis object:\n")
if (!inherits(basisobj, "basisfd"))
stop("Argument not a functional data object")
cat(paste("\n Type: ", basisobj$type,"\n"))
cat(paste("\n Range: ", basisobj$rangeval[1],
" to ", basisobj$rangeval[2],"\n"))
if (basisobj$type == "const") {
return()
}
cat(paste("\n Number of basis functions: ",
basisobj$nbasis, "\n"))
if (basisobj$type == "fourier")
cat(paste("\n Period: ",basisobj$params,"\n"))
if (length(basisobj$dropind) > 0) {
print(paste(length(basisobj$dropind),
"indices of basis functions to be dropped"))
}
}
# --------------------------------------------------------------------------
# equality for basisfd class
# --------------------------------------------------------------------------
"==.basisfd" <- function(basis1, basis2)
{
# EQ assesses whether two bases are equivalent.
# Last modified 1 January 2007
type1 <- basis1$type
range1 <- basis1$rangeval
nbasis1 <- basis1$nbasis
pars1 <- basis1$params
drop1 <- basis1$dropind
type2 <- basis2$type
range2 <- basis2$rangeval
nbasis2 <- basis2$nbasis
pars2 <- basis2$params
drop2 <- basis2$dropind
basisequal <- TRUE
# check types
if (!(type1 == type2)) {
basisequal <- FALSE
return(basisequal)
}
# check ranges
if (range1[1] != range2[1] || range1[2] != range2[2]) {
basisequal <- FALSE
return(basisequal)
}
# check numbers of basis functions
if (nbasis1 != nbasis2) {
basisequal <- FALSE
return(basisequal)
}
# check parameter vectors
if (!(all(pars1 == pars2))) {
basisequal <- FALSE
return(basisequal)
}
# check indices of basis function to drop
if (!(all(drop1 == drop2))) {
basisequal <- FALSE
return(basisequal)
}
return(basisequal)
}
# --------------------------------------------------------------------------
# pointwise multiplication method for basisfd class
# --------------------------------------------------------------------------
"*.basisfd" <- function (basisobj1, basisobj2)
{
# TIMES for (two basis objects sets up a basis suitable for (
# expanding the pointwise product of two functional data
# objects with these respective bases.
# In the absence of a true product basis system in this code,
# the rules followed are inevitably a compromise:
# (1) if both bases are B-splines, the norder is the sum of the
# two orders - 1, and the breaks are the union of the
# two knot sequences, each knot multiplicity being the maximum
# of the multiplicities of the value in the two break sequences.
# Order, however, is not allowed to exceed 20.
# That is, no knot in the product knot sequence will have a
# multiplicity greater than the multiplicities of this value
# in the two knot sequences.
# The rationale this rule is that order of differentiability
# of the product at each value will be controlled by
# whichever knot sequence has the greater multiplicity.
# In the case where one of the splines is order 1, or a step
# function, the problem is dealt with by replacing the
# original knot values by multiple values at that location
# to give a discontinuous derivative.
# (2) if both bases are Fourier bases, AND the periods are the
# the same, the product is a Fourier basis with number of
# basis functions the sum of the two numbers of basis fns.
# (3) if only one of the bases is B-spline, the product basis
# is B-spline with the same knot sequence and order two
# higher.
# (4) in all other cases, the product is a B-spline basis with
# number of basis functions equal to the sum of the two
# numbers of bases and equally spaced knots.
# Of course the ranges must also match.
# Last modified 2022.04.19 by Jim Ramsay
# check the ranges
range1 <- basisobj1$rangeval
range2 <- basisobj2$rangeval
if (range1[1] != range2[1] || range1[2] != range2[2])
stop("Ranges are not equal.")
# get the types
type1 <- basisobj1$type
type2 <- basisobj2$type
# deal with constant bases
if (type1 == "const" && type2 == "const") {
prodbasisobj <- create.constant.basis(range1)
return(prodbasisobj)
}
if (type1 == "const") {
prodbasisobj <- basisobj2
return(prodbasisobj)
}
if (type2 == "const") {
prodbasisobj <- basisobj1
return(prodbasisobj)
}
# get the numbers of basis functions
nbasis1 <- basisobj1$nbasis
nbasis2 <- basisobj2$nbasis
# work through the cases
if (type1 == "bspline" && type2 == "bspline") {
# both are bases B-splines
# get orders
interiorknots1 <- basisobj1$params
interiorknots2 <- basisobj2$params
# uniqueknots <- sort(union(interiorknots1, interiorknots2))
interiorknots1.2 <- union(interiorknots1, interiorknots2)
uniqueknots <- {
if(is.null(interiorknots1.2)) NULL else sort(interiorknots1.2)
}
nunique <- length(uniqueknots)
multunique <- rep(0,nunique)
for (i in seq(length=nunique)) {
mult1 <- {
if(length(interiorknots1)>0)
length(interiorknots1[interiorknots1==uniqueknots[i]])
else 0
}
mult2 <- {
if(length(interiorknots2)>0)
length(interiorknots2[interiorknots2==uniqueknots[i]])
else 0
}
multunique[i] <- max(mult1,mult2)
}
#
allknots <- rep(0,sum(multunique))
m2 <- 0
for (i in seq(length=nunique)) {
m1 <- m2 + 1
m2 <- m2 + multunique[i]
allknots[m1:m2] <- uniqueknots[i]
}
norder1 <- nbasis1 - length(interiorknots1)
norder2 <- nbasis2 - length(interiorknots2)
# norder is not allowed to exceed 20
norder <- min(c(norder1 + norder2 - 1,20))
allbreaks <- c(range1[1], allknots, range1[2])
nbasis <- length(allbreaks) + norder - 2
prodbasisobj <-
create.bspline.basis(range1, nbasis, norder, allbreaks)
return(prodbasisobj)
}
if (type1 == "fourier" && type2 == "fourier") {
# both bases Fourier
# check whether periods match
# if they do not, default to the basis below.
period1 <- basisobj1$params
period2 <- basisobj2$params
nbasis <- nbasis1 + nbasis2-1
if (period1 == period2) {
prodbasisobj <- create.fourier.basis(range1, nbasis, period1)
return(prodbasisobj)
}
}
# Default case when all else fails: the product basis is B-spline
# When neither basis is a B-spline basis, the order
# is the sum of numbers of bases, but no more than 8.
# When one of the bases if B-spline and the other isn"t,
# the order is the smaller of 8 or the order of the spline
# plus 2. Under no circumstances can the order exceed 20, however.
# See BsplineS where this restriction is tested.
if (type1 == "bspline" || type2 == "bspline") {
norder <- 8
if (type1 == "bspline") {
interiorknots1 <- basisobj1$params
norder1 <- nbasis1 - length(interiorknots1)
norder <- min(c(norder1+2, norder))
}
if (type2 == "bspline") {
interiorknots2 <- basisobj2$params
norder2 <- nbasis2 - length(interiorknots2)
norder <- min(c(norder2+2, norder))
}
} else {
# neither basis is B-spline
norder <- min(c(8, nbasis1+nbasis2))
}
# set up the default B-spline product basis
nbasis <- max(c(nbasis1+nbasis2, norder+1))
prodbasisobj <- create.bspline.basis(range1, nbasis, norder)
return(prodbasisobj)
}
# ---------------------------------------------------------
# Subscripted reference to a basis object
# ---------------------------------------------------------
# Last modified 22 December 2007
"[.basisfd" <- function(basisobj, subs=TRUE)
{
# select subsets of basis functions in a basis object
dropind = vector("numeric", 0)
nbasis <- basisobj$nbasis
for (i in 1:nbasis) {
if (!any(subs==i)) dropind = c(dropind, i)
}
basisobj$dropind <- dropind
return(basisobj)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.