R/flexsurvreg.R

Defines functions deriv_supported AICc.flexsurvreg BIC.flexsurvreg nobs.flexsurvreg coef.flexsurvreg logLik.flexsurvreg model.matrix.flexsurvreg model.frame.flexsurvreg .onLoad form.model.matrix print.flexsurvreg check_deriv flexsurvreg compress.model.matrices check.flexsurv.response expand.summfn.args expand.inits.args concat.formulae get.locform ancpar.formula anc_from_formula check.fixedpars check.formula check.dlist parse.dist minusloglik.flexsurv logLikFactory call_distfn_quiet buildAuxParms buildTransformer logh

Documented in AICc.flexsurvreg BIC.flexsurvreg coef.flexsurvreg flexsurvreg logLik.flexsurvreg model.frame.flexsurvreg model.matrix.flexsurvreg nobs.flexsurvreg

## sinh(log(y))
logh <- function(x) { 0.5 * (x - 1/x) }

buildTransformer <- function(inits, nbpars, dlist) {
    par.transform <-
        lapply(seq_len(nbpars),
               function(ind) {
                   xform  <- dlist$inv.transforms[[ind]]
                   function(pars) {
                       xform(pars[[ind]])
                   }
               })
    names(par.transform) <- names(inits)[seq_len(nbpars)]
    function(pars) {
        lapply(par.transform,
               function(item, par) { item(par) },
               pars)
    }
}

buildAuxParms <- function(aux, dlist) {
    aux.transform <- list()
    for (ind in seq_along(aux)) {
        name <- names(aux)[[ind]]
        if (!(name %in% dlist$pars)) {
            aux.transform[[name]] <- aux[[ind]]
        }
    }
    aux.transform
}

## Filter out warnings produced during fitting, when the optimiser visits
## parameters are on the boundary of the parameter space, as the optimiser will
## move on in these cases, and the message is unhelpful to users.

call_distfn_quiet <- function(fn, args){
    res <- withCallingHandlers(
        do.call(fn, args),
        warning=function(w) {
            if (grepl(x = w$message, pattern = "NaNs produced"))
                invokeRestart("muffleWarning")
        }
    )
    res
} 

logLikFactory <- function(Y, X=0, weights, bhazard, rtrunc, dlist,
                          inits, dfns, aux, mx, fixedpars=NULL) {
    pars   <- inits
    npars  <- length(pars)
    nbpars <- length(dlist$pars)
    insert.locations <- setdiff(seq_len(npars), fixedpars)
    
    ## which are the subjects with known event times
    event <- Y[,"status"] == 1
    event.times <- Y[event, "time1"]
    lcens.times <- Y[!event, "time2"]
    rcens.times <- Y[!event, "time1"]
    
    par.transform <- buildTransformer(inits, nbpars, dlist)

    aux.pars <- buildAuxParms(aux, dlist)

    do.bhazard <- any(bhazard > 0)

    loglik <- rep.int(0, nrow(Y))
    ## the ... here is to work around optim
    function(optpars, ...) {

        pars[insert.locations] <- optpars
        raw.pars <- pars
        pars <- as.list(pars)

        pars.event <- pars.nevent <- pars
        if (npars > nbpars) {
            beta <- raw.pars[(nbpars+1):npars]
            for (i in dlist$pars){
                pars[[i]] <- pars[[i]] +
                    X[,mx[[i]],drop=FALSE] %*% beta[mx[[i]]]
                pars.event[[i]] <- pars[[i]][event]
                pars.nevent[[i]] <- pars[[i]][!event]
            }
        }

        fnargs <- c(par.transform(pars),
                    aux.pars)
        fnargs.event <- c(par.transform(pars.event),
                          aux.pars)
        fnargs.nevent <- c(par.transform(pars.nevent),
                           aux.pars)
        
        ## Generic survival model likelihood contributions
        ## Observed deaths
        dargs <- fnargs.event
        dargs$x <- event.times
        dargs$log <- TRUE
        logdens <- call_distfn_quiet(dfns$d, dargs)
        
        ## Left censoring times (upper bound for event time) 
        if (!all(event)){
            pmaxargs <- fnargs.nevent
            pmaxargs$q <- lcens.times # Inf if right-censored, giving pmax=1
            pmax <- call_distfn_quiet(dfns$p, pmaxargs)
            pmax[pmaxargs$q==Inf] <- 1  # in case user-defined function doesn't already do this
        ## Right censoring times (lower bound for event time) 
            pargs <- fnargs.nevent
            pargs$q <- rcens.times
            pmin <- call_distfn_quiet(dfns$p, pargs)
        } 
        
        targs   <- fnargs
        ## Left-truncation
        targs$q <- Y[,"start"]
        plower <- call_distfn_quiet(dfns$p, targs)

        ## Right-truncation
        targs$q <- rtrunc
        pupper <- call_distfn_quiet(dfns$p, targs)
        pupper[rtrunc==Inf] <- 1 # in case the user's function doesn't already do this
        pobs <- pupper - plower # prob of being observed = 1 - 0 if no truncation 

        if (do.bhazard){
            # Adjust for background hazard in relative survival models
            pargs   <- fnargs.event
            pargs$q <- event.times
            pminb   <- call_distfn_quiet(dfns$p, pargs)
            logsurv_excess <- log(1 - pminb)
            loghaz_excess  <- logdens - logsurv_excess
            haz_excess <- exp(loghaz_excess)
            logdens_offset <- log(1 + bhazard[event] / haz_excess) # = log(haz_allcause / haz_excess)
            if (!all(event)) {               # background survival S* and left or interval censoring 
              b_condsurv <- 1 - bhazard[!event]  # this is S*(end) / S*(start)
              b_condsurv[lcens.times==Inf] <- 0  # when end=Inf, i.e. right censoring
            }
            if (any(is.finite(rtrunc)))
              stop("models with both right truncation and background hazards not supported")
        } else {
            logdens_offset <- 0
        }
        ## Express as vector of individual likelihood contributions
        loglik[event] <- (logdens + logdens_offset)
        if (!all(event)){
           if (do.bhazard)
             loglik[!event] <- log((pmax - 1)*b_condsurv  +  1 - pmin)
           else
             loglik[!event] <- log(pmax - pmin)
        }

        loglik <- loglik - log(pobs)
        
        ret <- -sum(loglik*weights)
        attr(ret, "indiv") <- loglik
        ret
    }
}

minusloglik.flexsurv <- function(optpars, Y, X=0, weights, bhazard, rtrunc, 
                                 dlist, inits,
                                 dfns, aux, mx, fixedpars=NULL) {
    logLikFactory(Y=Y, X=X, weights=weights, bhazard=bhazard,
                  rtrunc=rtrunc, dlist=dlist, inits=inits,
                  dfns=dfns, aux=aux, mx=mx, fixedpars=fixedpars)(optpars)
}

parse.dist <- function(dist){
    if (is.character(dist)) {
        # Added: case insensitve matching of distributions
        # Step 1: Use match.arg on lowercase argument, dists.
        # Step 2: Use match to get index in distribution list from
        # value obtained in step 1, and grab corresponding element.
        dist <- match.arg(tolower(dist), tolower(names(flexsurv.dists)))
        dist <- names(flexsurv.dists)[match(dist,tolower(names(flexsurv.dists)))]
        dlist <- flexsurv.dists[[dist]]
    }
    else if (is.list(dist)) {
        dlist <- check.dlist(dist)
    }
    else stop("\"dist\" should be a string for a built-in distribution, or a list for a custom distribution")
    dlist
}

check.dlist <- function(dlist){
    ## put tests in testthat
    if (is.null(dlist$name)) stop("\"name\" element of custom distribution list not given")
    if (!is.character(dlist$name)) stop("\"name\" element of custom distribution list should be a string")
    if (is.null(dlist$pars)) stop("parameter names \"pars\" not given in custom distribution list")
    if (!is.character(dlist$pars)) stop("parameter names \"pars\" should be a character vector")
    npars <- length(dlist$pars)
    if (is.null(dlist$location)) {
        warning("location parameter not given, assuming it is the first one")
        dlist$location <- dlist$pars[1]
    }
    if (!(dlist$location %in% dlist$pars)) {
        stop(sprintf("location parameter \"%s\" not in list of parameters", dlist$location))
    }
    if (is.null(dlist$transforms)) stop("transforms not given in custom distribution list")
    if (is.null(dlist$inv.transforms)) stop("inverse transforms not given in custom distribution list")
    if (!is.list(dlist$transforms)) stop("\"transforms\" must be a list of functions")
    if (!is.list(dlist$inv.transforms)) stop("\"inv.transforms\" must be a list of functions")
    if (!all(sapply(dlist$transforms, is.function))) stop("some of \"transforms\" are not functions")
    if (!all(sapply(dlist$inv.transforms, is.function))) stop("some of \"inv.transforms\" are not functions")
    if (length(dlist$transforms) != npars) stop("transforms vector of length ",length(dlist$transforms),", parameter names of length ",npars)
    if (length(dlist$inv.transforms) != npars) stop("inverse transforms vector of length ",length(dlist$inv.transforms),", parameter names of length ",npars) #
    for (i in 1:npars){
        if (is.character(dlist$transforms[[i]])) dlist$transforms[[i]] <- get(dlist$transforms[[i]])
        if (is.character(dlist$inv.transforms[[i]])) dlist$inv.transforms[[i]] <- get(dlist$inv.transforms[[i]])
        if (!is.function(dlist$transforms[[i]])) stop("Transformation function for parameter ", i, " not defined")
        if (!is.function(dlist$inv.transforms[[i]])) stop("Inverse transformation function for parameter ", i, " not defined")
    }
    if (!is.null(dlist$inits) && !is.function(dlist$inits)) stop("\"inits\" element of custom distribution list must be a function")
    dlist
}
## Return formula for linear model on parameter called "par"
## Parameters should not have the same name as anything that might
## appear as a function in a formula (such as "I", "strata", or
## "factor").  If any parameters of the distribution being used are
## named like this, then such model functions will be interpreted as
## parameters and will not work

check.formula <- function(formula, dlist, data = NULL){
    if (!inherits(formula,"formula")) stop("\"formula\" must be a formula object")
    labs <- as.character(attr(terms(formula, data = data), "variables"))[-c(1,2)]
    if (!("strata" %in% dlist$pars)){
        strat <- grep("strata\\((.+)\\)",labs)
        if (length(strat) > 0){
            cov <- gsub("strata\\((.+)\\)","\\1",labs[strat[1]])
            warning("Ignoring \"strata\" function: interpreting \"",cov, "\" as a covariate on \"", dlist$location, "\"")
        }
    }
    if (!("frailty" %in% dlist$pars)){
        fra <- grep("frailty\\((.+)\\)",labs)
        if (length(fra) > 0){
            stop("frailty models are not supported and behaviour of frailty() is undefined")
        }
    }
    if (!("offset" %in% dlist$pars)){
        fra <- grep("offset\\((.+)\\)",labs)
        if (length(fra) > 0){
            stop("offset() terms are not supported in formulae. To fit a model with a covariate coefficient fixed to 1, use the `inits` and `fixedpars` arguments")
        }
    }
}

check.fixedpars <- function(fixedpars, npars) {
    if (!is.null(fixedpars) && !is.logical(fixedpars) &&
        (!is.numeric(fixedpars) || !all(fixedpars %in% 1:npars))) {
        dots <- if(npars>2) "...," else ""
        stop("fixedpars must be TRUE/FALSE or a vector of indices in 1,",dots,npars)
    }
}

anc_from_formula <- function(formula, anc, dlist,
                             msg = "\"anc\" must be a list of formulae",
                             data = NULL, loc_warn=TRUE) {
    parnames <- dlist$pars
    ancnames <- setdiff(parnames, dlist$location)
    if (is.null(anc)){
        anc <- vector(mode="list", length=length(ancnames))
        names(anc) <- ancnames
        for (i in ancnames){
            anc[[i]] <- ancpar.formula(formula, i, data)
        }
        ancpar.formula(formula, dlist$location, data, location=TRUE)
    }
    else {
        if (!is.list(anc) || !all(sapply(anc, function(x)inherits(x, "formula"))))
            stop(msg)
        badnames <- names(anc)[!(names(anc) %in% dlist$pars)]
        if (length(badnames) > 0) stop(sprintf("There is no parameter of distribution `%s` called `%s`",
                                               dlist$name, badnames[1]))
        ## reorder components of anc to canonical order
        anc <- anc[dlist$pars[dlist$pars %in% names(anc)]]
        if (dlist$location %in% names(anc) && loc_warn)
          warning(sprintf("Ignoring location parameter `%s` in ancillary formula", dlist$location))
    }
    anc
}

ancpar.formula <- function(formula, par, data = NULL, location=FALSE){
    labs <- attr(terms(formula, data = data), "term.labels")
    pattern <- paste0(par,"\\((.+)\\)")
    labs <- grep(pattern,labs,value=TRUE)
    if (length(labs)==0) return(NULL)
    else if (location) 
        warning(sprintf("Ignoring location parameter `%s` in ancillary formula", par))
    labs <- gsub(pattern, "\\1", labs)
    f2 <- reformulate(labs)
    environment(f2) <- environment(formula)
    f2
}

## Omit formula terms containing ancillary parameters, leaving only
## the formula for the location parameter

get.locform <- function(formula, ancnames, data = NULL){
    labs <- attr(terms(formula, data = data), "term.labels")
    dropx <- unlist(lapply(ancnames, function(x){grep(paste0(x,"\\((.+)\\)"),labs)}))
    formula(terms(formula, data = data)[c(0,setdiff(seq_along(labs),dropx))])
}

## Concatenate location formula (that includes Surv response term)
## with list of ancillary formulae, giving a merged formula to obtain
## the model frame

concat.formulae <- function(formula,forms, data = NULL){
    covnames <- unlist(lapply(forms, function(x)attr(terms(x, data = data),"term.labels")))
    covform <- if(length(covnames)==0) "1" else paste(covnames, collapse=" + ")
    respname <- as.character(formula[2])
    form <- paste0(respname, " ~ ", covform)
    f2 <- eval(parse(text=form))
    environment(f2) <- environment(formula)
    ## names of variables in the data, not the formula, with functions such as factor() stripped
    ## used for error message with incomplete "newdata" in summary()
    covnames.bare <- unlist(lapply(forms, function(x)all.vars(delete.response(terms(x, data = data)))))
    attr(f2, "covnames") <- covnames.bare
    attr(f2, "covnames.orig") <- covnames
    f2
}

## User-supplied initial value functions don't have to include all
## four possible arguments: this expands them if they don't

#' @noRd
expand.inits.args <- function(inits){
    inits2 <- inits
    formals(inits2) <- alist(t=,mf=,mml=,aux=)
    body(inits2) <- body(inits)
    inits2
}

## User-supplied summary output functions don't have to include all
## two possible arguments: this expands them if they don't

#' @noRd
expand.summfn.args <- function(summfn){
    summfn2 <- summfn
    args <- c(alist(t=,start=), formals(summfn))
    formals(summfn2) <- args[!duplicated(names(args))]
    body(summfn2) <- body(summfn)
    summfn2
}

### On entry:
### event (status=1)            time1=event time
### right-censoring (status=0)  time1=lower bound
### left-censoring (status=2)   time1=upper bound 
### interval-censoring (status=3)  time1=lower, time2=upper

### On exit
### time1=lower bound or event time
### time2=upper bound
### start=left truncation time
### so meaning of time1,time2 reversed with left-censoring

check.flexsurv.response <- function(Y){
    if (!inherits(Y, "Surv"))
        stop("Response must be a survival object")
### convert Y from Surv object to numeric matrix
    type <- attr(Y, "type")
### though "time" only used for initial values, printed time at risk, empirical hazard
    if (type == "counting")
        Y <- cbind(Y, time=Y[,"stop"] - Y[,"start"], time1=Y[,"stop"], time2=Inf)
    else if (type == "interval"){ # Surv() converts interval2 to interval
        Y[,"time2"][Y[,"status"]==0] <- Inf   # upper bound with right censoring 
        Y[,"time2"][Y[,"status"]==1] <- Y[,"time1"][Y[,"status"]==1]  # event time
        Y[,"time2"][Y[,"status"]==2] <- Y[,"time1"][Y[,"status"]==2]
        Y[,"time1"][Y[,"status"]==2] <- 0  # 
        Y <- cbind(Y, start=0, stop=Y[,"time1"], time=Y[,"time1"])
    }
    else if (type == "right")
        Y <- cbind(Y, start=0, stop=Y[,"time"], time1=Y[,"time"], time2=Inf)
    else stop("Survival object type \"", attr(Y, "type"), "\"", " not supported")
    if (any(Y[,"time1"]<0)){
        stop("Negative survival times in the data")
    }
    attr(Y, "type") <- type
    Y
}

compress.model.matrices <- function(mml){
    cbind.drop.intercept <- function(...)do.call("cbind", lapply(list(...), function(x)x[,-1,drop=FALSE]))
    X <- do.call("cbind.drop.intercept",mml)
    loc.cnames <- colnames(mml[[1]])[-1]
    anc.cnames <- unlist(mapply(function(x,y)sprintf("%s(%s)",x,y), names(mml[-1]), lapply(mml[-1], function(x)colnames(x)[-1])))
    cnames <- c(loc.cnames, anc.cnames)
    colnames(X) <- cnames
    X
}



##' Flexible parametric regression for time-to-event data
##'
##' Parametric modelling or regression for time-to-event data.  Several built-in
##' distributions are available, and users may supply their own.
##'
##' Parameters are estimated by maximum likelihood using the algorithms
##' available in the standard R \code{\link{optim}} function.  Parameters
##' defined to be positive are estimated on the log scale.  Confidence intervals
##' are estimated from the Hessian at the maximum, and transformed back to the
##' original scale of the parameters.
##'
##' The usage of \code{\link{flexsurvreg}} is intended to be similar to
##' \code{\link[survival]{survreg}} in the \pkg{survival} package.
##'
##' @aliases flexsurvreg flexsurv.dists
##' @param formula A formula expression in conventional R linear modelling
##'   syntax. The response must be a survival object as returned by the
##'   \code{\link[survival]{Surv}} function, and any covariates are given on the
##'   right-hand side.  For example,
##'
##'   \code{Surv(time, dead) ~ age + sex}
##'
##'   \code{Surv} objects of \code{type="right"},\code{"counting"},
##'   \code{"interval1"} or \code{"interval2"} are supported, corresponding to
##'   right-censored, left-truncated or interval-censored observations.
##'
##'   If there are no covariates, specify \code{1} on the right hand side, for
##'   example \code{Surv(time, dead) ~ 1}.
##'
##'   If the right hand side is specified as \code{.} all remaining variables are
##'   included as covariates. For example, \code{Surv(time, dead) ~ .}
##'   corresponds to \code{Surv(time, dead) ~ age + sex} if \code{data} contains
##'   the variables \code{time}, \code{dead}, \code{age}, and \code{sex}.
##'
##'   By default, covariates are placed on the ``location'' parameter of the
##'   distribution, typically the "scale" or "rate" parameter, through a linear
##'   model, or a log-linear model if this parameter must be positive.  This
##'   gives an accelerated failure time model or a proportional hazards model
##'   (see \code{dist} below) depending on how the distribution is
##'   parameterised.
##'
##'   Covariates can be placed on other (``ancillary'') parameters by using the
##'   name of the parameter as a ``function'' in the formula.  For example, in a
##'   Weibull model, the following expresses the scale parameter in terms of age
##'   and a treatment variable \code{treat}, and the shape parameter in terms of
##'   sex and treatment.
##'
##'   \code{Surv(time, dead) ~ age + treat + shape(sex) + shape(treat)}
##'
##'   However, if the names of the ancillary parameters clash with any real
##'   functions that might be used in formulae (such as \code{I()}, or
##'   \code{factor()}), then those functions will not work in the formula.  A
##'   safer way to model covariates on ancillary parameters is through the
##'   \code{anc} argument to \code{\link{flexsurvreg}}.
##'
##'   \code{\link[survival]{survreg}} users should also note that the function
##'   \code{strata()} is ignored, so that any covariates surrounded by
##'   \code{strata()} are applied to the location parameter.  Likewise the
##'   function \code{frailty()} is not handled.
##'
##' @param anc An alternative and safer way to model covariates on ancillary
##'   parameters, that is, parameters other than the main location parameter of
##'   the distribution.  This is a named list of formulae, with the name of each
##'   component giving the parameter to be modelled.  The model above can also
##'   be defined as:
##'
##'   \code{Surv(time, dead) ~ age + treat, anc = list(shape = ~ sex +
##'   treat)}
##' @param data A data frame in which to find variables supplied in
##'   \code{formula}.  If not given, the variables should be in the
##'   working environment.
##' 
##' @param weights Optional numeric variable giving weights for each
##'   individual in the data.  The fitted model is then defined by
##'   maximising the weighted sum of the individual-specific log-likelihoods.
##'
##' @param bhazard Optional variable giving expected hazards for relative
##'   survival models.  The model is described by Nelson et al. (2007).
##'
##'   \code{bhazard} should contain a vector of values for each person in
##'   the data.
##'
##'  \itemize{
##'  \item  For people with observed events, \code{bhazard} refers to the
##'   hazard at the observed event time.
##'
##'  \item  For people whose event time is
##'   left-censored or interval-censored, \code{bhazard} should contain the
##'   probability of dying by the end of the corresponding interval,
##'   conditionally on being alive at the start.
##'
##'   \item For people whose event time
##'   is right-censored, the value of \code{bhazard} is ignored and does not
##'   need to be specified.
##' }
##'
##'   If \code{bhazard} is supplied, then the parameter estimates returned by
##'   \code{flexsurvreg} and the outputs returned by \code{summary.flexsurvreg}
##'   describe the parametric model for relative survival.
##'   
##'   For relative survival models, the log-likelihood returned by \code{flexsurvreg} is a partial
##'   log-likelihood, which omits a constant term defined by the sum of the
##'   cumulative hazards at the event or censoring time for each individual.   
##'   Hence this constant must be added if a full likelihood is needed. 
##'
##' @param rtrunc Optional variable giving individual-specific right-truncation
##'   times.  Used for analysing data with "retrospective ascertainment".  For
##'   example, suppose we want to estimate the distribution of the time from
##'   onset of a disease to death, but have only observed cases known to have
##'   died by the current date.   In this case, times from onset to death for
##'   individuals in the data are right-truncated by the current date minus the
##'   onset date.   Predicted survival times for new cases can then be described
##'   by an un-truncated version of the fitted distribution.
##'
##'   These models can suffer from weakly identifiable parameters and
##'   badly-behaved likelihood functions, and it is advised to compare
##'   convergence for different initial values by supplying different
##'   \code{inits} arguments to \code{flexsurvreg}.
##'
##' @param subset Vector of integers or logicals specifying the subset of the
##'   observations to be used in the fit.
##' @param na.action a missing-data filter function, applied after any 'subset'
##'   argument has been used. Default is \code{options()$na.action}.
##' @param dist Typically, one of the strings in the first column of the
##'   following table, identifying a built-in distribution.  This table also
##'   identifies the location parameters, and whether covariates on these
##'   parameters represent a proportional hazards (PH) or accelerated failure
##'   time (AFT) model.  In an accelerated failure time model, the covariate
##'   speeds up or slows down the passage of time.  So if the coefficient
##'   (presented on the log scale) is log(2), then doubling the covariate value
##'   would give half the expected survival time.
##'
##'   \tabular{llll}{ \code{"gengamma"} \tab Generalized gamma (stable) \tab mu
##'   \tab AFT \cr \code{"gengamma.orig"} \tab Generalized gamma (original) \tab
##'   scale \tab AFT \cr \code{"genf"} \tab Generalized F (stable) \tab mu \tab
##'   AFT \cr \code{"genf.orig"} \tab Generalized F (original) \tab mu \tab AFT
##'   \cr \code{"weibull"} \tab Weibull \tab scale \tab AFT \cr \code{"gamma"}
##'   \tab Gamma \tab rate \tab AFT \cr \code{"exp"} \tab Exponential \tab rate
##'   \tab PH \cr \code{"llogis"} \tab Log-logistic \tab scale \tab AFT \cr
##'   \code{"lnorm"} \tab Log-normal \tab meanlog \tab AFT \cr \code{"gompertz"}
##'   \tab Gompertz \tab rate \tab PH \cr }
##'
##'   \code{"exponential"} and \code{"lognormal"} can be used as aliases for
##'   \code{"exp"} and \code{"lnorm"}, for compatibility with
##'   \code{\link[survival]{survreg}}.
##'
##'   Alternatively, \code{dist} can be a list specifying a custom distribution.
##'   See section ``Custom distributions'' below for how to construct this list.
##'
##'   Very flexible spline-based distributions can also be fitted with
##'   \code{\link{flexsurvspline}}.
##'
##'   The parameterisations of the built-in distributions used here are the same
##'   as in their built-in distribution functions: \code{\link{dgengamma}},
##'   \code{\link{dgengamma.orig}}, \code{\link{dgenf}},
##'   \code{\link{dgenf.orig}}, \code{\link{dweibull}}, \code{\link{dgamma}},
##'   \code{\link{dexp}}, \code{\link{dlnorm}}, \code{\link{dgompertz}},
##'   respectively.  The functions in base R are used where available,
##'   otherwise, they are provided in this package.
##'
##'   A package vignette "Distributions reference" lists the survivor functions
##'   and covariate effect parameterisations used by each built-in distribution.
##'
##'   For the Weibull, exponential and log-normal distributions,
##'   \code{\link{flexsurvreg}} simply works by calling \code{\link[survival]{survreg}} to
##'   obtain the maximum likelihood estimates, then calling \code{\link{optim}}
##'   to double-check convergence and obtain the covariance matrix for
##'   \code{\link{flexsurvreg}}'s preferred parameterisation.
##'
##'   The Weibull parameterisation is different from that in
##'   \code{\link[survival]{survreg}}, instead it is consistent with
##'   \code{\link{dweibull}}.  The \code{"scale"} reported by
##'   \code{\link[survival]{survreg}} is equivalent to \code{1/shape} as defined
##'   by \code{\link{dweibull}} and hence \code{\link{flexsurvreg}}.  The first
##'   coefficient \code{(Intercept)} reported by \code{\link[survival]{survreg}}
##'   is equivalent to \code{log(scale)} in \code{\link{dweibull}} and
##'   \code{\link{flexsurvreg}}.
##'
##'   Similarly in the exponential distribution, the rate, rather than the mean,
##'   is modelled on covariates.
##'
##'   The object \code{flexsurv.dists} lists the names of the built-in
##'   distributions, their parameters, location parameter, functions used to
##'   transform the parameter ranges to and from the real line, and the
##'   functions used to generate initial values of each parameter for
##'   estimation.
##' @param inits An optional numeric vector giving initial values for each
##'   unknown parameter.  These are numbered in the order: baseline parameters
##'   (in the order they appear in the distribution function, e.g. shape before
##'   scale in the Weibull), covariate effects on the location parameter,
##'   covariate effects on the remaining parameters.  This is the same order as
##'   the printed estimates in the fitted model.
##'
##'   If not specified, default initial values are chosen from a simple summary
##'   of the survival or censoring times, for example the mean is often used to
##'   initialize scale parameters.  See the object \code{flexsurv.dists} for the
##'   exact methods used.  If the likelihood surface may be uneven, it is
##'   advised to run the optimisation starting from various different initial
##'   values to ensure convergence to the true global maximum.
##' @param fixedpars Vector of indices of parameters whose values will be fixed
##'   at their initial values during the optimisation.  The indices are ordered
##'   as in \code{inits}.  For example, in a stable generalized Gamma model with
##'   two covariates, to fix the third of three generalized gamma parameters
##'   (the shape \code{Q}, see the help for \code{\link{GenGamma}}) and the
##'   second covariate, specify \code{fixedpars = c(3, 5)}
##' @param dfns An alternative way to define a custom survival distribution (see
##'   section ``Custom distributions'' below).  A list whose components may
##'   include \code{"d"}, \code{"p"}, \code{"h"}, or \code{"H"} containing the
##'   probability density, cumulative distribution, hazard, or cumulative hazard
##'   functions of the distribution.  For example,
##'
##'   \code{list(d=dllogis, p=pllogis)}.
##'
##'   If \code{dfns} is used, a custom \code{dlist} must still be provided, but
##'   \code{dllogis} and \code{pllogis} need not be visible from the global
##'   environment.  This is useful if \code{flexsurvreg} is called within other
##'   functions or environments where the distribution functions are also
##'   defined dynamically.
##' @param aux A named list of other arguments to pass to custom distribution
##'   functions.  This is used, for example, by \code{\link{flexsurvspline}} to
##'   supply the knot locations and modelling scale (e.g. hazard or odds).  This
##'   cannot be used to fix parameters of a distribution --- use
##'   \code{fixedpars} for that.
##' @param cl Width of symmetric confidence intervals for maximum likelihood
##'   estimates, by default 0.95.
##' @param integ.opts List of named arguments to pass to
##'   \code{\link{integrate}}, if a custom density or hazard is provided without
##'   its cumulative version.  For example,
##'
##'   \code{integ.opts = list(rel.tol=1e-12)}
##'
##' @param sr.control For the models which use \code{\link[survival]{survreg}} to find the
##'   maximum likelihood estimates (Weibull, exponential, log-normal), this list
##'   is passed as the \code{control} argument to \code{\link[survival]{survreg}}.
##'
##' @param ... Optional arguments to the general-purpose optimisation routine
##'   \code{\link{optim}}.  For example, the BFGS optimisation algorithm is the
##'   default in \code{\link{flexsurvreg}}, but this can be changed, for example
##'   to \code{method="Nelder-Mead"} which can be more robust to poor initial
##'   values.  If the optimisation fails to converge, consider normalising the
##'   problem using, for example, \code{control=list(fnscale = 2500)}, for
##'   example, replacing 2500 by a number of the order of magnitude of the
##'   likelihood. If 'false' convergence is reported with a
##'   non-positive-definite Hessian, then consider tightening the tolerance
##'   criteria for convergence. If the optimisation takes a long time,
##'   intermediate steps can be printed using the \code{trace} argument of the
##'   control list. See \code{\link{optim}} for details.
##'
##' @param hessian Calculate the covariances and confidence intervals for the
##'   parameters. Defaults to \code{TRUE}.
##'
##' @param hess.control List of options to control covariance matrix computation. 
##'    Available options are:
##'
##'   \code{numeric}.  If \code{TRUE} then numerical methods are used
##'   to compute the Hessian for models where an analytic Hessian is
##'   available.  These models include the Weibull (both versions),
##'   exponential, Gompertz and spline models with hazard or odds
##'   scale.  The default is to use the analytic Hessian for these
##'   models.  For all other models, numerical methods are always used
##'   to compute the Hessian, whether or not this option is set.
##'
##'   \code{tol.solve}. The tolerance used for \code{\link{solve}}
##'   when inverting the Hessian (default \code{.Machine$double.eps})
##'
##'   \code{tol.evalues} The accepted tolerance for negative
##'   eigenvalues in the covariance matrix (default \code{1e-05}).
##'
##'   The Hessian is positive definite, thus invertible, at the maximum
##'   likelihood.  If the Hessian computed after optimisation convergence can't
##'   be inverted, this is either because the converged result is not the
##'   maximum likelihood (e.g. it could be a "saddle point"), or because the
##'   numerical methods used to obtain the Hessian were inaccurate. If you
##'   suspect that the Hessian was computed wrongly enough that it is not
##'   invertible, but not wrongly enough that the nearest valid inverse would be
##'   an inaccurate estimate of the covariance matrix, then these tolerance
##'   values can be modified (reducing \code{tol.solve} or increasing
##'   \code{tol.evalues}) to allow the inverse to be computed.
##'
##'
##' @return A list of class \code{"flexsurvreg"} containing information about
##'   the fitted model.  Components of interest to users may include:
##'   \item{call}{A copy of the function call, for use in post-processing.}
##'   \item{dlist}{List defining the survival distribution used.}
##'   \item{res}{Matrix of maximum likelihood estimates and confidence limits,
##'   with parameters on their natural scales.} \item{res.t}{Matrix of maximum
##'   likelihood estimates and confidence limits, with parameters all
##'   transformed to the real line (using a log transform for all built-in
##'   models where this is necessary).  The
##'   \code{\link{coef}}, \code{\link{vcov}}
##'   and \code{\link{confint}} methods for \code{flexsurvreg} objects work on
##'   this scale.} \item{coefficients}{The transformed maximum likelihood
##'   estimates, as in \code{res.t}. Calling \code{coef()} on a
##'   \code{\link{flexsurvreg}} object simply returns this component.}
##'   \item{loglik}{Log-likelihood. This will differ from Stata, where the sum
##'   of the log uncensored survival times is added to the log-likelihood in
##'   survival models, to remove dependency on the time scale.   
##'   
##'   For relative survival models specified with \code{bhazard}, this is a partial 
##'   log-likelihood which omits a constant term defined by the sum of the
##'   cumulative hazards over all event or censoring times. 
##'   }
##'   \item{logliki}{Vector of individual contributions to the log-likelihood}
##'   \item{AIC}{Akaike's information criterion (-2*log likelihood + 2*number of
##'   estimated parameters)} \item{cov}{Covariance matrix of the parameters, on
##'   the real-line scale (e.g. log scale), which can be extracted with
##'   \code{\link{vcov}}.} \item{data}{Data used in the model fit.  To extract
##'   this in the standard R formats, use use
##'   \code{\link{model.frame.flexsurvreg}} or
##'   \code{\link{model.matrix.flexsurvreg}}.}
##'   
##' @section Custom distributions: \code{\link{flexsurvreg}} is intended to be
##'   easy to extend to handle new distributions.  To define a new distribution
##'   for use in \code{\link{flexsurvreg}}, construct a list with the following
##'   elements:
##'
##'   \describe{ \item{\code{"name"}}{A string naming the distribution.  If this
##'   is called \code{"dist"}, for example, then there must be visible in the
##'   working environment, at least, either
##'
##'   a) a function called \code{ddist} which defines the probability density,
##'
##'   or
##'
##'   b) a function called \code{hdist} which defines the hazard.
##'
##'   Ideally, in case a) there should also be a function called \code{pdist}
##'   which defines the probability distribution or cumulative density, and in
##'   case b) there should be a function called \code{Hdist} defining the
##'   cumulative hazard.  If these additional functions are not provided,
##'   \pkg{flexsurv} attempts to automatically create them by numerically
##'   integrating the density or hazard function.  However, model fitting will
##'   be much slower, or may not even work at all, if the analytic versions of
##'   these functions are not available.
##'
##'   The functions must accept vector arguments (representing different times,
##'   or alternative values for each parameter) and return the results as a
##'   vector.  The function \code{\link{Vectorize}} may be helpful for doing
##'   this: see the example below.
##' These functions may be in an add-on package (see below for an example) or
##' may be user-written.  If they are user-written they must be defined in the
##' global environment, or supplied explicitly through the \code{dfns} argument
##' to \code{flexsurvreg}.  The latter may be useful if the functions are
##' created dynamically (as in the source of \code{flexsurvspline}) and thus
##' not visible through R's scoping rules.
##' 
##' Arguments other than parameters must be named in the conventional way --
##' for example \code{x} for the first argument of the density function or
##' hazard, as in \code{\link{dnorm}(x, ...)} and \code{q} for the first
##' argument of the probability function.  Density functions should also have
##' an argument \code{log}, after the parameters, which when \code{TRUE},
##' computes the log density, using a numerically stable additive formula if
##' possible.
##' 
##' Additional functions with names beginning with \code{"DLd"} and
##' \code{"DLS"} may be defined to calculate the derivatives of the log density
##' and log survival probability, with respect to the parameters of the
##' distribution.  The parameters are expressed on the real line, for example
##' after log transformation if they are defined as positive.  The first
##' argument must be named \code{t}, representing the time, and the remaining
##' arguments must be named as the parameters of the density function. The
##' function must return a matrix with rows corresponding to times, and columns
##' corresponding to the parameters of the distribution.  The derivatives are
##' used, if available, to speed up the model fitting with \code{\link{optim}}.
##' } \item{\code{"pars"}}{Vector of strings naming the parameters of the
##' distribution. These must be the same names as the arguments of the density
##' and probability functions.  }
##' \item{\code{"location"}}{Name of the main parameter governing the mean of
##' the distribution.  This is the default parameter on which covariates are
##' placed in the \code{formula} supplied to \code{flexsurvreg}. }
##' \item{\code{"transforms"}}{List of R
##' functions which transform the range of values taken by each parameter onto
##' the real line.  For example, \code{c(log, log)} for a distribution with two
##' positive parameters. }
##' \item{\code{"inv.transforms"}}{List of R functions defining the
##' corresponding inverse transformations.  Note these must be lists, even for
##' single parameter distributions they should be supplied as, e.g.
##' \code{c(exp)} or \code{list(exp)}. }
##' \item{\code{"inits"}}{A function of the
##' observed survival times \code{t} (including right-censoring times, and
##' using the halfway point for interval-censored times) which returns a vector
##' of reasonable initial values for maximum likelihood estimation of each
##' parameter.  For example, \code{function(t){ c(1, mean(t)) }} will always
##' initialize the first of two parameters at 1, and the second (a scale
##' parameter, for instance) at the mean of \code{t}.  } }
##' 
##' For example, suppose we want to use an extreme value survival distribution.
##' This is available in the CRAN package \pkg{eha}, which provides
##' conventionally-defined density and probability functions called
##' \code{\link[eha:EV]{eha::dEV}} and \code{\link[eha:EV]{eha::pEV}}.  See the Examples below
##' for the custom list in this case, and the subsequent command to fit the
##' model.
##' @author Christopher Jackson <chris.jackson@@mrc-bsu.cam.ac.uk>
##' @seealso \code{\link{flexsurvspline}} for flexible survival modelling using
##' the spline model of Royston and Parmar.
##' 
##' \code{\link{plot.flexsurvreg}} and \code{\link{lines.flexsurvreg}} to plot
##' fitted survival, hazards and cumulative hazards from models fitted by
##' \code{\link{flexsurvreg}} and \code{\link{flexsurvspline}}.
##' @references Jackson, C. (2016). flexsurv: A Platform for Parametric
##' Survival Modeling in R. Journal of Statistical Software, 70(8), 1-33.
##' doi:10.18637/jss.v070.i08
##' 
##' Cox, C. (2008) The generalized \eqn{F} distribution: An umbrella for
##' parametric survival analysis.  Statistics in Medicine 27:4301-4312.
##' 
##' Cox, C., Chu, H., Schneider, M. F. and MuĂąoz, A. (2007) Parametric survival
##' analysis and taxonomy of hazard functions for the generalized gamma
##' distribution.  Statistics in Medicine 26:4252-4374
##' 
##' Jackson, C. H. and Sharples, L. D. and Thompson, S. G. (2010) Survival
##' models in health economic evaluations: balancing fit and parsimony to
##' improve prediction. International Journal of Biostatistics 6(1):Article 34.
##'
##' Nelson, C. P., Lambert, P. C., Squire, I. B., & Jones, D. R. (2007).
##' Flexible parametric models for relative survival, with application in
##' coronary heart disease. Statistics in medicine, 26(30), 5486-5498.
##' 
##' @keywords models survival
##' @examples
##' 
##' ## Compare generalized gamma fit with Weibull
##' fitg <- flexsurvreg(formula = Surv(futime, fustat) ~ 1, data = ovarian, dist="gengamma")
##' fitg
##' fitw <- flexsurvreg(formula = Surv(futime, fustat) ~ 1, data = ovarian, dist="weibull")
##' fitw
##' plot(fitg)
##' lines(fitw, col="blue", lwd.ci=1, lty.ci=1)
##' ## Identical AIC, probably not enough data in this simple example for a
##' ## very flexible model to be worthwhile.
##' 
##' ## Custom distribution
##' ## make "dEV" and "pEV" from eha package (if installed)
##' ##   available to the working environment
##' if (require("eha")) {
##' custom.ev <- list(name="EV",
##'                       pars=c("shape","scale"),
##'                       location="scale",
##'                       transforms=c(log, log),
##'                       inv.transforms=c(exp, exp),
##'                       inits=function(t){ c(1, median(t)) })
##' fitev <- flexsurvreg(formula = Surv(futime, fustat) ~ 1, data = ovarian,
##'                     dist=custom.ev)
##' fitev
##' lines(fitev, col="purple", col.ci="purple")
##' }
##' 
##' 
##' ## Custom distribution: supply the hazard function only
##' hexp2 <- function(x, rate=1){ rate } # exponential distribution
##' hexp2 <- Vectorize(hexp2)
##' custom.exp2 <- list(name="exp2", pars=c("rate"), location="rate",
##'                     transforms=c(log), inv.transforms=c(exp),
##'                     inits=function(t)1/mean(t))
##' flexsurvreg(Surv(futime, fustat) ~ 1, data = ovarian, dist=custom.exp2)
##' flexsurvreg(Surv(futime, fustat) ~ 1, data = ovarian, dist="exp")
##' ## should give same answer
##' 
##' @export
flexsurvreg <- function(formula, anc=NULL, data, weights, bhazard, rtrunc, subset, na.action, dist,
                        inits, fixedpars=NULL, dfns=NULL, aux=NULL, cl=0.95,
                        integ.opts=NULL, sr.control=survreg.control(), hessian=TRUE, hess.control=NULL, ...)
{
    call <- match.call()
    if (missing(data)) data <- NULL
    if (missing(dist)) stop("Distribution \"dist\" not specified")
    dlist <- parse.dist(dist)
    dfns <- form.dp(dlist, dfns, integ.opts)
    parnames <- dlist$pars

    check.formula(formula, dlist, data)
    anc <- anc_from_formula(formula, anc, dlist, data = data)

    ancnames <- setdiff(parnames, dlist$location)
    forms <- c(location=get.locform(formula, ancnames, data), anc)
    names(forms)[[1]] <- dlist$location

    ## a) calling model.frame() directly doesn't work.  it only looks in
    ## "data" or the environment of "formula" for extra variables like
    ## "weights". needs to also look in environment of flexsurvreg.
    ## should handle calling flexsurvreg within a function 

    ## Make model frame
    indx <- match(c("formula", "data", "weights", "bhazard", "rtrunc", "subset", "na.action"), names(call), nomatch = 0)
    if (indx[1] == 0)
        stop("A \"formula\" argument is required")
    temp <- call[c(1, indx)]
    temp[[1]] <- as.name("model.frame")

    f2 <- concat.formulae(formula,forms, data)
    temp[["formula"]] <- terms(f2)
    if (missing(data)) temp[["data"]] <- environment(formula)
    m <- eval(temp, parent.frame())

    m <- droplevels_keepcontrasts(m) # remove unused factor levels after subset applied
    attr(m,"covnames") <- attr(f2, "covnames") # for "newdata" in summary
    attr(m,"covnames.orig") <- intersect(colnames(m), attr(f2, "covnames.orig")) # for finding factors in plot method
    Y <- check.flexsurv.response(model.extract(m, "response"))
    mml <- mx <- vector(mode="list", length=length(dlist$pars))
    names(mml) <- names(mx) <- c(dlist$location, setdiff(dlist$pars, dlist$location))
    for (i in names(forms)){
        mml[[i]] <- model.matrix(forms[[i]], m)
        mx[[i]] <- length(unlist(mx)) + seq_len(ncol(mml[[i]][,-1,drop=FALSE]))
    }
    X <- compress.model.matrices(mml)
    contr.save <- lapply(mml, function(x)attr(x,"contrasts"))

    weights <- model.extract(m, "weights")
    if (is.null(weights)) weights <- m$"(weights)" <- rep(1, nrow(X))
    bhazard <- model.extract(m, "bhazard")
    if (is.null(bhazard)) bhazard <- rep(0, nrow(X))
    rtrunc <- model.extract(m, "rtrunc")
    if (is.null(rtrunc)) rtrunc <- rep(Inf, nrow(X))
    dat <- list(Y=Y, m=m, mml=mml)
    ncovs <- length(attr(m, "covnames.orig"))

    ncoveffs <- ncol(X)
    nbpars <- length(parnames) # number of baseline parameters
    npars <- nbpars + ncoveffs

    if (missing(inits) && is.null(dlist$inits))
        stop("\"inits\" not supplied, and no function to estimate them found in the custom distribution list")
    if (missing(inits) || anyNA(inits)) {
        yy <- ifelse(Y[,"status"]==3 & is.finite(Y[,"time2"]), (Y[,"time1"] + Y[,"time2"])/2, Y[,"time1"])
        wt <- yy*weights*length(yy)/sum(weights)
        dlist$inits <- expand.inits.args(dlist$inits)
        inits.aux <- c(aux, list(forms=forms, data=if(missing(data)) NULL else data, weights=temp$weights,
                                 control=sr.control,
                                 counting=(attr(model.extract(m, "response"), "type")=="counting")
                                 ))
        auto.inits <- dlist$inits(t=wt,mf=m,mml=mml,aux=inits.aux)
        if (!missing(inits) && anyNA(inits)) inits[is.na(inits)] <- auto.inits[is.na(inits)]
        else inits <- auto.inits
    }
    if (!is.numeric(inits)) stop ("initial values must be a numeric vector")
    nin <- length(inits)
    if (nin < npars && ncoveffs > 0)
        inits <- c(inits, rep(0,length.out=npars-nin))
    else if (nin > npars){
        inits <- inits[1:npars]
        warning("Initial values are a vector length > ", npars, ": using only the first ", npars)
    }
    else if (nin < nbpars){
        stop("Initial values are a vector length ", nin, ", but distribution has ",nbpars, " parameters")
    }

    for (i in 1:nbpars)
        inits[i] <- dlist$transforms[[i]](inits[i])
    outofrange <- which(is.nan(inits) | is.infinite(inits))
    if (any(outofrange)){
        plural <- if(length(outofrange) > 1) "s" else ""
        stop("Initial value", plural, " for parameter", plural, " ",
             paste(outofrange,collapse=","), " out of range")
    }
    names(inits) <- c(parnames, colnames(X))

    check.fixedpars(fixedpars, npars)

    if ((is.logical(fixedpars) && fixedpars==TRUE) ||
        (is.numeric(fixedpars) && identical(as.vector(fixedpars), 1:npars))) {
        minusloglik <- minusloglik.flexsurv(inits, Y=Y, X=X,
                                            weights=weights, bhazard=bhazard, rtrunc=rtrunc, 
                                            dlist=dlist, inits=inits,
                                            dfns=dfns, aux=aux, mx=mx)
        res.t <- matrix(inits, ncol=1)
        inits.nat <- inits
        for (i in 1:nbpars)
            inits.nat[i] <- dlist$inv.transforms[[i]](inits[i])
        res <- matrix(inits.nat, ncol=1)
        dimnames(res) <- dimnames(res.t) <- list(names(inits), "est")
        ret <- list(res=res, res.t=res.t, npars=0,
                    loglik=-as.vector(minusloglik), logliki=attr(minusloglik,"indiv"))
    }
    else {
        optpars <- inits[setdiff(1:npars, fixedpars)]
        optim.args <- list(...)
        if (is.null(optim.args$method)){
            optim.args$method <- "BFGS"
        }
        gr <- if (dfns$deriv && deriv_supported(Y)) Dminusloglik.flexsurv else NULL
        has_analytic_hessian <- dfns$hessian && !isTRUE(hess.control$numeric) && deriv_supported(Y)
        optim.args <- c(optim.args,
                        list(par=optpars,
                             fn=logLikFactory(Y=Y, X=X,
                                              weights=weights,
                                              bhazard=bhazard,
                                              rtrunc=rtrunc, 
                                              inits=inits, dlist=dlist,
                                              dfns=dfns,
                                              aux=aux, mx=mx,
                                              fixedpars=fixedpars),
                             gr=gr,
                             Y=Y, X=X, weights=weights,
                             bhazard=bhazard, rtrunc=rtrunc, dlist=dlist,
                             inits=inits, dfns=dfns, aux=aux,
                             mx=mx, fixedpars=fixedpars,
                             hessian = hessian && !has_analytic_hessian))
        opt <- do.call("optim", optim.args)
        est <- opt$par
        if (has_analytic_hessian)
          opt$hessian <- D2minusloglik.flexsurv(est, Y=Y, X=X, weights=weights, bhazard=bhazard,
                                                rtrunc=rtrunc, dlist=dlist, inits=inits, dfns=dfns,
                                                aux=aux, mx=mx, fixedpars=fixedpars)
        
        if (hessian && all(is.finite(opt$hessian)))
        {
            cov <- .hess_to_cov(opt$hessian, hess.control$tol.solve, hess.control$tol.evalues)
            se <- sqrt(diag(cov))
            if (!is.numeric(cl) || length(cl)>1 || !(cl>0) || !(cl<1))
                stop("cl must be a number in (0,1)")
            lcl <- est - qnorm(1 - (1-cl)/2)*se
            ucl <- est + qnorm(1 - (1-cl)/2)*se
        }
        else {
            if (hessian) 
                warning("Optimisation has probably not converged to the maximum likelihood - Hessian is not finite. ")
            cov <- lcl <- ucl <- se <- NA
        }
        res <- cbind(est=inits, lcl=NA, ucl=NA, se=NA)
        res[setdiff(1:npars, fixedpars),] <- cbind(est, lcl, ucl, se)
        colnames(res) <- c("est", paste(c("L","U"), round(cl*100), "%", sep=""), "se")
        res.t <- res # results on transformed (log) scale
        for (i in 1:nbpars){ # results on natural scale
            res[i,1:3] <- dlist$inv.transforms[[i]](res[i,1:3])
            if (identical(body(dlist$transforms[[i]]), body(log)))
                res[i,"se"] <- exp(res.t[i,"est"])*res.t[i,"se"]
            else if (identical(body(dlist$transforms[[i]]), body(logh)))
                res[i,"se"] <- dexph(res.t[i,"est"])*res.t[i,"se"]
            else if (!identical(dlist$transforms[[i]], identity))
                res[i,"se"] <- NA
            ## theoretically could also do logit SE(g(x) = exp(x)/(1 + exp(x))) = g'(x) SE(x);  g'(x) = exp(x)/(1 + exp(x))^2
            ## or any interval scale (dglogit) as in msm
        }
        minusloglik <- minusloglik.flexsurv(res.t[,"est"], Y=Y, X=X, weights=weights, bhazard=bhazard, rtrunc=rtrunc, 
                                            dlist=dlist, inits=inits, dfns=dfns, aux=aux, mx=mx)
        ret <- list(res=res, res.t=res.t, cov=cov, coefficients=res.t[,"est"],
                    npars=length(est), fixedpars=fixedpars, optpars=setdiff(1:npars, fixedpars),
                    loglik=-opt$value, logliki=attr(minusloglik,"indiv"),
                    cl=cl, opt=opt)
    }
    covdata  <- list(covnames = attr(dat$m, "covnames"),
                     isfac = sapply(dat$m[,attr(dat$m,"covnames.orig"),drop=FALSE], is.factor),
                     terms = attr(dat$m, "terms"),
                     xlev = .getXlevels(attr(dat$m, "terms"), dat$m))
    ret <- c(list(call=call, dlist=dlist, aux=aux,
                  ncovs=ncovs, ncoveffs=ncoveffs,
                  mx=mx, basepars=1:nbpars,
                  covpars=if (ncoveffs>0) (nbpars+1):npars else NULL,
                  AIC = -2*ret$loglik + 2*ret$npars,
                  data = dat, datameans = colMeans(X),
                  N=nrow(dat$Y), events=sum(dat$Y[,"status"]==1), trisk=sum(dat$Y[,"time"]),
                  concat.formula=f2, all.formulae=forms, dfns=dfns),
             ret,
             list(all.contrasts=contr.save,
                  covdata = covdata)) # temporary position so cyclomort doesn't break
    ret$BIC <- BIC.flexsurvreg(ret, cens=TRUE)
    ret <- c(ret, check_deriv(optpars=optpars, Y=Y, X=X, weights=weights, bhazard=bhazard, rtrunc=rtrunc, dlist=dlist, inits=inits, dfns=dfns, aux=aux, mx=mx, fixedpars=fixedpars))
    class(ret) <- "flexsurvreg"
    ret
}

check_deriv <- function(optpars, Y, X, weights, bhazard, rtrunc, dlist, inits, dfns, aux, mx, fixedpars){
  if (isTRUE(getOption("flexsurv.test.analytic.derivatives")) && deriv_supported(Y)){
    if (is.logical(fixedpars) && fixedpars==TRUE) { optpars <- inits; fixedpars=FALSE }
    if (dfns$deriv)
      deriv.test <- deriv_test(optpars=optpars, Y=Y, X=X, weights=weights, bhazard=bhazard, rtrunc=rtrunc, dlist=dlist, inits=inits, dfns=dfns, aux=aux, mx=mx, fixedpars=fixedpars)
    if (dfns$hessian)
      hess.test <- hess.test(optpars=optpars, Y=Y, X=X, weights=weights, bhazard=bhazard, rtrunc=rtrunc, dlist=dlist, inits=inits, dfns=dfns, aux=aux, mx=mx, fixedpars=fixedpars)
    res <- list(deriv.test=deriv.test, hess.test=hess.test)
  } else res <- NULL
  res
}

##' @export
print.flexsurvreg <- function(x, ...)
{
    covs <- names(x$datameans)
    covinds <- match(covs, rownames(x$res))
    cat("Call:\n")
    dput(x$call)
    cat("\n")
    if (x$npars > 0) {
        res <- x$res
        cat ("Estimates: \n")
        if (any(covinds)) {
            ecoefs <- matrix(NA, nrow=nrow(x$res), ncol=3)
            colnames(ecoefs) <- c("exp(est)", colnames(res)[2:3])
            means <- rep(NA,nrow(x$res))
            ecoefs[covinds,] <- exp(x$res[covinds,1:3,drop=FALSE])
            means[covinds] <- x$datameans
            res <- cbind(means, res, ecoefs)
            colnames(res)[1] <- "data mean"
        }
        args <- list(...)
        if (is.null(args$digits)) args$digits <- 3
        f <- do.call("format", c(list(x=res), args))
        print(f, print.gap=2, quote=FALSE, na.print="")
    }
    llname <- if (all(x$bhazard == 0)) "Log-likelihood" else "Partial log-likelihood"
    llname <- sprintf("\n%s = ", llname)
    aicname <- if (all(x$bhazard == 0)) "AIC" else "Partial AIC"
    aicname <- sprintf("\n%s = ", aicname)
    cat("\nN = ", x$N, ",  Events: ", x$events,
        ",  Censored: ", x$N - x$events,
        "\nTotal time at risk: ", x$trisk,
        llname, x$loglik, ", df = ", x$npars,
        aicname, x$AIC, "\n\n", sep="")
}

form.model.matrix <- function(object, newdata, na.action=na.pass, forms=NULL){
    ## If required covariate missing, give a slightly more informative error message than, e.g.
    ## "Error in eval(expr, envir, enclos) (from flexsurvreg.R#649) : object 'sex' not found"
    covnames <- object$covdata$covnames
    missing.covs <- unique(covnames[!covnames %in% names(newdata)])
    if (length(missing.covs) > 0){
        missing.covs <- sprintf("\"%s\"", missing.covs)
        plural <- if (length(missing.covs)>1) "s" else ""
        stop(sprintf("Value%s of covariate%s ",plural,plural), paste(missing.covs, collapse=", "), " not supplied in \"newdata\"")
    }

    ## as in predict.lm
    Terms <- delete.response(object$covdata$terms)
    mf <- model.frame(Terms, newdata, xlev = object$covdata$xlev, na.action=na.action)
    if (!is.null(cl <- attr(Terms, "dataClasses")))
        .checkMFClasses(cl, mf)
    if (is.null(forms))
        forms <- object$all.formulae
    mml <- vector(mode="list", length=length(forms))
    names(mml) <- names(forms)
    forms[[1]] <- delete.response(terms(forms[[1]]))
    for (i in seq_along(forms)){
        mml[[i]] <- model.matrix(forms[[i]], mf, contrasts.arg = object$all.contrasts[[i]])
    }
    X <- compress.model.matrices(mml)

    attr(X, "newdata") <- mf # newdata with any extra variables stripped.  Used to name components of summary list
    X
}


##' Variance-covariance matrix from  a flexsurvreg model
##'
##' @inheritParams logLik.flexsurvreg
##'
##' @return Variance-covariance matrix of the estimated parameters, on
##'   the scale that they were estimated on (for positive parameters
##'   this is the log scale).
##' 
##' @export
vcov.flexsurvreg <- function (object, ...)
{
    object$cov
}

.onLoad <- function(libname, pkgname) {
    assign("flexsurv.dfns", new.env(), envir=parent.env(environment()))
}



##' Extract original data from \code{flexsurvreg} objects.
##' 
##' Extract the data from a model fitted with \code{flexsurvreg}.
##' 
##' 
##' @aliases model.frame.flexsurvreg model.matrix.flexsurvreg
##' @param formula A fitted model object, as returned by
##' \code{\link{flexsurvreg}}.
##' @param object A fitted model object, as returned by
##' \code{\link{flexsurvreg}}.
##' @param par String naming the parameter whose linear model matrix is
##' desired.
##' 
##' The default value of \code{par=NULL} returns a matrix consisting of the
##' model matrices for all models in the object \code{cbind}ed together, with
##' the intercepts excluded.  This is not really a ``model matrix'' in the
##' usual sense, however, the columns directly correspond to the covariate
##' coefficients in the matrix of estimates from the fitted model.
##' @param ... Further arguments (not used).
##' @return \code{model.frame} returns a data frame with all the original
##' variables used for the model fit.
##' 
##' \code{model.matrix} returns a design matrix for a part of the model that
##' includes covariates.  The required part is indicated by the \code{"par"}
##' argument (see above).
##' @author C. H. Jackson \email{chris.jackson@@mrc-bsu.cam.ac.uk}
##' @seealso \code{\link{flexsurvreg}}, \code{\link{model.frame}},
##' \code{\link{model.matrix}}.
##' @keywords models
##' @export
model.frame.flexsurvreg <- function(formula, ...)
{
    x <- formula
    x$data$m
}

##' @export
##' @rdname model.frame.flexsurvreg
model.matrix.flexsurvreg <- function(object, par=NULL, ...)
{
    x <- object
    if (is.null(par)) compress.model.matrices(x$data$mml) else x$data$mml[[par]]
}

##' Log likelihood from a flexsurvreg model
##'
##' @param object A fitted model object of class
##'   \code{\link{flexsurvreg}}, e.g. as returned by
##'   \code{flexsurvreg} or \code{flexsurvspline}.
##'
##' @param ... Other arguments (currently unused).
##'
##' @return Log-likelihood (numeric) with additional attributes \code{df} (degrees of freedom, or number
##' of parameters that were estimated), and number of observations \code{nobs} (including observed
##' events and censored observations).
##' 
##' @export
logLik.flexsurvreg <- function(object, ...){
    val <- object$loglik
    attr(val, "df") <- object$npars
    attr(val, "nobs") <- object$N
    class(val) <- "logLik"
    val
}

##' Extract model coefficients from fitted flexible survival models
##' 
##' Extract model coefficients from fitted flexible survival models.  This
##' presents all parameter estimates, transformed to the real line if necessary.
##' For example, shape or scale parameters, which are constrained to be
##' positive, are returned on the log scale.
##' 
##' This matches the behaviour of \code{coef.default} for standard R model
##' families such as \code{\link[stats]{glm}}, where intercepts in regression
##' models are presented on the same scale as the covariate effects.  Note that
##' any parameter in a distribution fitted by \code{\link{flexsurvreg}} or
##' \code{\link{flexsurvreg}} may be an intercept in a regression model.
#' 
##' @param object Output from \code{\link{flexsurvreg}} or
##' \code{\link{flexsurvspline}}, representing a fitted survival model object.
##' @param ... Further arguments passed to or from other methods.  Currently
##' unused.
##' @return This returns the \code{mod$res.t[,"est"]} component of the fitted
##' model object \code{mod}.  See \code{\link{flexsurvreg}},
##' \code{\link{flexsurvspline}} for full documentation of all components.
##' @author C. H. Jackson \email{chris.jackson@@mrc-bsu.cam.ac.uk}
##' @seealso \code{\link{flexsurvreg}}, \code{\link{flexsurvspline}}.
##' @keywords models
##' @export
coef.flexsurvreg <- function(object, ...){
    object$coefficients
}


##' Number of observations contributing to a fitted flexible survival model
##' 
##' Number of observations contributing to a fitted flexible survival model
##' 
##' By default, this matches the behaviour of the \code{nobs} method for \code{\link[survival]{survreg}} objects, including both censored and uncensored observations.
##' 
##' If a weighted \code{flexsurvreg} analysis was done, then this function returns the sum of the weights.
##'
##' @param object Output from \code{\link{flexsurvreg}} or
##' \code{\link{flexsurvspline}}, representing a fitted survival model object.
##'
##' @param cens Include censored observations in the number.  \code{TRUE} by default.
##' If \code{FALSE} then the number of observed events is returned.  See
##'   \code{\link{BIC.flexsurvreg}} for a discussion of the issues
##'   with defining the sample size for censored data. 
##' 
##' @param ... Further arguments passed to or from other methods.  Currently
##' unused.
##' 
##' @return This returns the \code{mod$N} component of the fitted
##' model object \code{mod}.  See \code{\link{flexsurvreg}},
##' \code{\link{flexsurvspline}} for full documentation of all components.
##' 
##' @author C. H. Jackson \email{chris.jackson@@mrc-bsu.cam.ac.uk}
##' 
##' @seealso \code{\link{flexsurvreg}}, \code{\link{flexsurvspline}}.
##' 
##' @keywords models
##' 
##' @export
nobs.flexsurvreg <- function(object, cens=TRUE, ...){
  if (cens) ind <- seq(length.out=nrow(object$data$Y)) else ind <- which(object$data$Y[,"status"] == 1)
  sum(object$data$m[ind,"(weights)"])
}


##' Bayesian Information Criterion (BIC) for comparison of flexsurvreg models
##' 
##' Bayesian Information Criterion (BIC) for comparison of flexsurvreg models
##' 
##' @param object Fitted model returned by \code{\link{flexsurvreg}}
##'   (or \code{\link{flexsurvspline}}).
##' 
##' @param cens Include censored observations in the sample size term
##'   (\code{n}) used in the calculation of BIC.
##'
##' @return The BIC of the fitted model.  This is minus twice the log likelihood plus \code{p*log(n)}, where
##'   \code{p} is the number of parameters and \code{n} is the sample
##'   size of the data.  If \code{weights} was supplied to
##'   \code{flexsurv}, the sample size is defined as the sum of the
##'   weights.
##'
##' @param ... Other arguments (currently unused).
##'
##' @details There is no "official" definition of what the sample size
##'   should be for the use of BIC in censored survival analysis.  BIC
##'   is based on an approximation to Bayesian model comparison using
##'   Bayes factors and an implicit vague prior.  Informally, the
##'   sample size describes the number of "units" giving rise to a
##'   distinct piece of information (Kass and Raftery 1995).  However
##'   censored observations provide less information than observed
##'   events, in principle.  The default used here is the number of
##'   individuals, for consistency with more familiar kinds of
##'   statistical modelling.  However if censoring is heavy, then the
##'   number of events may be a better represent the amount of
##'   information.  Following these principles, the best approximation
##'   would be expected to be somewere in between.
##'
##' AIC and BIC are intended to measure different things.  Briefly,
##' AIC measures predictive ability, whereas BIC is expected to choose
##' the true model from a set of models where one of them is the
##' truth.  Therefore BIC chooses simpler models for all but the
##' tiniest sample sizes (\eqn{log(n)>2}, \eqn{n>7}).  AIC might be preferred in the
##' typical situation where
##' "all models are wrong but some are useful". AIC also gives similar
##' results to cross-validation (Stone 1977).
##'
##' @references Kass, R. E., & Raftery, A. E. (1995). Bayes
##'   factors. Journal of the American Statistical Association,
##'   90(430), 773-795.
##'
##' @references Stone, M. (1977). An asymptotic equivalence of choice
##'   of model by cross‐validation and Akaike's criterion. Journal of
##'   the Royal Statistical Society: Series B (Methodological), 39(1),
##'   44-47.
##'
##' @seealso \code{\link{BIC}}, \code{\link{AIC}}, \code{\link{AICC.flexsurvreg}}, \code{\link{nobs.flexsurvreg}}
##'
##' @export
BIC.flexsurvreg <- function(object, cens = TRUE, ...){
  n <- nobs.flexsurvreg(object, cens=cens)
  -2*object$loglik + object$npars * log(n)  
}


##' Second-order Akaike information criterion 
##'
##' Second-order or "corrected" Akaike information criterion, often
##' known as AICc (see, e.g. Burnham and Anderson 2002).  This is
##' defined as -2 log-likelihood + \code{(2*p*n)/(n - p -1)}, whereas
##' the standard AIC is defined as -2 log-likelihood + \code{2*p},
##' where \code{p} is the number of parameters and \code{n} is the
##' sample size.  The correction is intended to adjust AIC for
##' small-sample bias, hence it only makes a difference to the result
##' for small \code{n}.
##' 
##' This can be spelt either as \code{AICC} or \code{AICc}.
##'
##' @param object Fitted model returned by \code{\link{flexsurvreg}}
##'   (or \code{\link{flexsurvspline}}).
##'
##' @param cens Include censored observations in the sample size term
##'   (\code{n}) used in this calculation. See
##'   \code{\link{BIC.flexsurvreg}} for a discussion of the issues
##'   with defining the sample size.
##'
##' @param ... Other arguments (currently unused).
##'
##' @references Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
##'
##' @return The second-order AIC of the fitted model.
##'
##' @seealso \code{\link{BIC}}, \code{\link{AIC}}, \code{\link{BIC.flexsurvreg}}, \code{\link{nobs.flexsurvreg}}
##' 
##' @export
AICc.flexsurvreg <- function(object, cens=TRUE, ...){
  n <- nobs.flexsurvreg(object, cens=cens)
  p <- object$npars
## equivalently: object$AIC + ((2 * p) * (p + 1) / (n - p - 1))
  -2*object$loglik + (2*p*n) / (n - p - 1) 
}


##' @rdname AICc.flexsurvreg
##' @export
AICC.flexsurvreg <- AICc.flexsurvreg

##' Second-order Akaike information criterion 
##' 
##' Generic function for the second-order Akaike information criterion.
##' The only current implementation of this in \pkg{flexsurv} is
##' in \code{\link{AICc.flexsurvreg}}, see there for more details.
##'
##' This can be spelt either as \code{AICC} or \code{AICc}.
##'
##' @param object Fitted model object.
##'
##' @param ... Other arguments (currently unused).
##'
##' @export
AICc <- function (object, ...)
UseMethod("AICc")

##' @rdname AICc
##' @export
AICC <- AICc

deriv_supported <- function(Y){
  event <- Y[,"status"] == 1
  left_cens <- is.finite(Y[!event, "time2"])
  !any(left_cens)
}


droplevels_factor_keepcontrasts <- function (x, exclude = if (anyNA(levels(x))) NULL else NA, ...) {
  ct <- attr(x, "contrasts")
  x <- factor(x, exclude = exclude)
  contrasts(x) <- ct
  x
}

droplevels_keepcontrasts <- function (x, except = NULL, exclude, ...) 
{
    ix <- vapply(x, is.factor, NA)
    if (!is.null(except)) 
        ix[except] <- FALSE
    x[ix] <- if (missing(exclude)) 
        lapply(x[ix], droplevels_factor_keepcontrasts)
    else lapply(x[ix], droplevels_factor_keepcontrasts, exclude = exclude)
    x
}

Try the flexsurv package in your browser

Any scripts or data that you put into this service are public.

flexsurv documentation built on Sept. 12, 2024, 7:23 a.m.