NET | R Documentation |
This function defines the Power Exponential t distribution (NET), a four parameter distribution, for a gamlss.family
object to be used for a
GAMLSS fitting using the function gamlss()
. The functions dNET
,
pNET
define the density and distribution function the NET distribution.
NET(mu.link = "identity", sigma.link = "log", nu.link ="identity",
tau.link = "identity")
pNET(q, mu=0, sigma=1, nu=1.5, tau=2, lower.tail = TRUE, log.p = FALSE)
dNET(x, mu=0, sigma=1, nu=1.5, tau=2, log=FALSE)
qNET(p, mu=0, sigma=1, nu=1.5, tau=2, lower.tail = TRUE, log.p = FALSE)
rNET(n, mu=0, sigma=1, nu=1.5, tau=2)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x,q |
vector of quantiles |
p |
vector of probabilities |
n |
number of observations. |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of |
tau |
vector of |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
The NET distribution was introduced by Rigby and Stasinopoulos (1994) as a robust distribution for a response
variable with heavier tails than the normal. The NET
distribution is the abbreviation of the Normal Exponential Student t distribution.
The NET distribution is a four parameter continuous distribution, although in the GAMLSS implementation only
the two parameters, mu
and sigma
, of the distribution are modelled with
nu
and tau
fixed.
The distribution takes its names because it is normal up to
nu
, Exponential from nu
to tau
(hence abs(nu)<=abs(tau)
) and Student-t with
nu*tau-1
degrees of freedom after tau
. Maximum
likelihood estimator of the third and forth parameter can be
obtained, using the GAMLSS functions, find.hyper
or prof.dev
.
For more details about the NET
distribution please refer to pp. 393-396 of of Rigby et al. (2019).
NET()
returns a gamlss.family
object which can be used to fit a Box Cox Power Exponential distribution in the gamlss()
function.
dNET()
gives the density, pNET()
gives the distribution
function.
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos, D. M. (1994), Robust fitting of an additive model for variance heterogeneity, COMPSTAT : Proceedings in Computational Statistics, editors:R. Dutter and W. Grossmann, pp 263-268, Physica, Heidelberg.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
SStasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
, BCPE
NET() #
data(abdom)
plot(function(x)dNET(x, mu=0,sigma=1,nu=2, tau=3), -5, 5)
plot(function(x)pNET(x, mu=0,sigma=1,nu=2, tau=3), -5, 5)
# fit NET with nu=1 and tau=3
# library(gamlss)
#h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=NET,
# data=abdom, nu.start=2, tau.start=3)
#plot(h)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.