NO2 | R Documentation |
The function NO2()
defines the normal distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
with mean equal to mu
and variance equal to sigma
.
The functions dNO2
, pNO2
, qNO2
and rNO2
define the density, distribution function, quantile function and random
generation for this specific parameterization of the normal distribution.
[A alternative parameterization with sigma
as the standard deviation is given in the function NO()
]
NO2(mu.link = "identity", sigma.link = "log")
dNO2(x, mu = 0, sigma = 1, log = FALSE)
pNO2(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qNO2(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rNO2(n, mu = 0, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The parametrization of the normal distribution given in the function NO2()
is
f(y|\mu,\sigma)=\frac{1}{\sqrt{2 \pi \sigma}}\exp\left[-\frac{1}{2}\frac{(y-\mu)^2}{\sigma}\right]
for y=(-\infty,\infty)
, \mu=(-\infty,+\infty)
and \sigma>0
see p. 370 of Rigby et al. (2019).
returns a gamlss.family
object which can be used to fit a normal distribution in the gamlss()
function.
For the function NO()
, \mu
is the mean and \sigma
is the standard deviation (not the variance) of the normal distribution.
[The function NO2()
defines the normal distribution with \sigma
as the variance.]
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
, NO
NO()# gives information about the default links for the normal distribution
dat<-rNO(100)
hist(dat)
plot(function(y) dNO(y, mu=10 ,sigma=2), 0, 20)
plot(function(y) pNO(y, mu=10 ,sigma=2), 0, 20)
plot(function(y) qNO(y, mu=10 ,sigma=2), 0, 1)
# library(gamlss)
# gamlss(dat~1,family=NO) # fits a constant for mu and sigma
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.