PIG | R Documentation |
The PIG()
function defines the Poisson-inverse Gaussian distribution, a two parameter distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
. The PIG2()
function is a repametrization of PIG()
where mu
and sigma
are orthogonal see Heller et al. (2018).
The functions dPIG
, pPIG
, qPIG
and rPIG
define the density, distribution function, quantile function and random
generation for the Poisson-inverse Gaussian PIG()
, distribution. Also codedPIG2, pPIG2
, qPIG2
and rPIG2
are the equivalent functions for codePIG2()
The functions ZAPIG()
and ZIPIG()
are the zero adjusted (hurdle) and zero inflated versions of the Poisson-inverse Gaussian distribution, respectively. That is three parameter distributions.
The functions dZAPIG
, dZIPIG
, pZAPIG
,pZIPIG
, qZAPIG
qZIPIG
rZAPIG
and rZIPIG
define the probability, cumulative, quantile and random
generation functions for the zero adjusted and zero inflated Poisson Inverse Gaussian distributions, ZAPIG()
, ZIPIG()
, respectively.
PIG(mu.link = "log", sigma.link = "log")
dPIG(x, mu = 1, sigma = 1, log = FALSE)
pPIG(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qPIG(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE,
max.value = 10000)
rPIG(n, mu = 1, sigma = 1, max.value = 10000)
PIG2(mu.link = "log", sigma.link = "log")
dPIG2(x, mu=0.5, sigma=0.02, log = FALSE)
pPIG2(q, mu=0.5, sigma=0.02, lower.tail = TRUE, log.p = FALSE)
qPIG2(p, mu=0.5, sigma=0.02, lower.tail = TRUE, log.p = FALSE,
max.value = 10000)
rPIG2(n, mu=0.5, sigma=0.02)
ZIPIG(mu.link = "log", sigma.link = "log", nu.link = "logit")
dZIPIG(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE)
pZIPIG(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
qZIPIG(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE,
max.value = 10000)
rZIPIG(n, mu = 1, sigma = 1, nu = 0.3, max.value = 10000)
ZAPIG(mu.link = "log", sigma.link = "log", nu.link = "logit")
dZAPIG(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE)
pZAPIG(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
qZAPIG(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE,
max.value = 10000)
rZAPIG(n, mu = 1, sigma = 1, nu = 0.3, max.value = 10000)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of positive dispersion parameter |
nu |
vector of zero probability parameter |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
max.value |
a constant, set to the default value of 10000 for how far the algorithm should look for q |
The probability function of the Poisson-inverse Gaussian distribution PIG
, is given by
f(y|\mu,\sigma)=\left( \frac{2 \alpha}{\pi}^{\frac{1}{2}}\right)\frac{\mu^y e^{\frac{1}{\sigma}} K_{y-\frac{1}{2}}(\alpha)}{(\alpha \sigma)^y y!}
where \alpha^2=\frac{1}{\sigma^2}+\frac{2\mu}{\sigma}
, for y=0,1,2,...,\infty
where \mu>0
and \sigma>0
and
K_{\lambda}(t)=\frac{1}{2}\int_0^{\infty} x^{\lambda-1} \exp\{-\frac{1}{2}t(x+x^{-1})\}dx
is the modified Bessel function of the third kind, see also pp. 487-489 of Rigby et al. (2019).
[Note that the above parameterization was used by Dean, Lawless and Willmot(1989). It is also a special case of the Sichel distribution SI()
when \nu=-\frac{1}{2}
.]
The probability function of the Poisson-inverse Gaussian distribution PIG2
, see Heller, Couturier and Heritier (2018), is given by
f(y|\mu,\sigma)=\left( \frac{2 \sigma}{\pi}^{\frac{1}{2}}\right)
\frac{\mu^y e^{\frac{1}{\sigma}} K_{y-\frac{1}{2}}(\sigma)}{(\alpha \sigma)^y y!}
for y=0,1,2,...,\infty
, \mu>0
and \sigma>0
and \alpha = \left[(\mu^2+\sigma^2)^{0.5}-\mu \right]^{-1}
, K_{\lambda}(t)=\frac{1}{2}\int_0^{\infty} x^{\lambda-1} \exp\{-\frac{1}{2}t(x+x^{-1})\}dx
is the modified Bessel function of the third kind, see pp. 487-489 of Rigby et al. (2019).
The definition of the zero adjusted Poison inverse Gaussian distribution, ZAPIG
and the the zero inflated Poison inverse Gaussian distribution, ZIPIG
, are given in p. 513 and pp. 514-515 of of Rigby et al. (2019), respectively.
Returns a gamlss.family
object which can be used to fit a Poisson-inverse Gaussian distribution in the gamlss()
function.
Dominique-Laurent Couturier, Mikis Stasinopoulos, Bob Rigby and Marco Enea
Dean, C., Lawless, J. F. and Willmot, G. E., A mixed poisson-inverse-Gaussian regression model, Canadian J. Statist., 17, 2, pp 171-181
Heller, G. Z., Couturier, D.L. and Heritier, S. R. (2018) Beyond mean modelling: Bias due to misspecification of dispersion in Poisson-inverse Gaussian regression Biometrical Journal, 2, pp 333-342.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
, NBI
, NBII
,
SI
, SICHEL
PIG()# gives information about the default links for the Poisson-inverse Gaussian distribution
#plot the pdf using plot
plot(function(y) dPIG(y, mu=10, sigma = 1 ), from=0, to=50, n=50+1, type="h") # pdf
# plot the cdf
plot(seq(from=0,to=50),pPIG(seq(from=0,to=50), mu=10, sigma=1), type="h") # cdf
# generate random sample
tN <- table(Ni <- rPIG(100, mu=5, sigma=1))
r <- barplot(tN, col='lightblue')
# fit a model to the data
# library(gamlss)
# gamlss(Ni~1,family=PIG)
ZIPIG()
ZAPIG()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.