RG | R Documentation |
The function RG
defines the reverse Gumbel distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the
function gamlss()
.
The functions dRG
, pRG
, qRG
and rRG
define the density, distribution function, quantile function and random
generation for the specific parameterization of the reverse Gumbel distribution.
RG(mu.link = "identity", sigma.link = "log")
dRG(x, mu = 0, sigma = 1, log = FALSE)
pRG(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qRG(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rRG(n, mu = 0, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The specific parameterization of the reverse Gumbel distribution used in RG
is
f(y|\mu,\sigma)= \frac{1}{\sigma} \hspace{1mm}
\exp\left\{-\left(\frac{y-\mu}{\sigma}\right)-\exp\left[-\left(\frac{y-\mu)}{\sigma}\right)\right]\right\}
for y=(-\infty,\infty)
, \mu=(-\infty,+\infty)
and \sigma>0
see pp. 370-371 of Rigby et al. (2019).
RG()
returns a gamlss.family
object which can be used to fit a Gumbel distribution in the gamlss()
function.
dRG()
gives the density, pGU()
gives the distribution
function, qRG()
gives the quantile function, and rRG()
generates random deviates.
The mean of the distribution is \mu+0.57722 \sigma
and the variance is
\pi^2 \sigma^2/6
.
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
plot(function(x) dRG(x, mu=0,sigma=1), -3, 6,
main = "{Reverse Gumbel density mu=0,sigma=1}")
RG()# gives information about the default links for the Gumbel distribution
dat<-rRG(100, mu=10, sigma=2) # generates 100 random observations
# library(gamlss)
# gamlss(dat~1,family=RG) # fits a constant for each parameter mu and sigma
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.