RGE | R Documentation |
The function RGE
defines the reverse generalized extreme family distribution, a three parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dRGE
, pRGE
, qRGE
and rRGE
define the density, distribution function, quantile function and random
generation for the specific parameterization of the reverse generalized extreme distribution given in details below.
RGE(mu.link = "identity", sigma.link = "log", nu.link = "log")
dRGE(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)
pRGE(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qRGE(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
rRGE(n, mu = 1, sigma = 0.1, nu = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of the shape parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
Definition file for reverse generalized extreme family distribution.
The probability density function of the generalized extreme value
distribution is obtained from Johnson et al. (1995), Volume 2,
p76, equation (22.184) [where (\xi, \theta, \gamma)
\longrightarrow (\mu, \sigma, \nu)
].
The probability density function of the reverse generalized extreme value distribution
is then obtained by replacing y by -y and \mu
by -\mu
.
Hence the probability density function of the reverse generalized extreme value distribution
with \nu>0
is given by
f(y|\mu,\sigma, \nu)=\frac{1}{\sigma}\left[1+\frac{\nu(y-\mu)}{\sigma}\right]^{\frac{1}{\nu}-1}S_1(y|\mu,\sigma,\nu)
for
\mu-\frac{\sigma}{\nu}<y<\infty
where
S_1(y|\mu,\sigma,\nu)=\exp\left\{-\left[1+\frac{\nu(y-\mu)}{\sigma}\right]^\frac{1}{\nu}\right\}
and where -\infty<\mu<y+\frac{\sigma}{\nu}
, \sigma>0
and \nu>0
. Note that only the case \nu>0
is allowed here. The reverse generalized extreme value distribution is denoted
as RGE(\mu,\sigma,\nu
) or as Reverse Generalized.Extreme.Family(\mu,\sigma,\nu
).
Note the the above distribution is a reparameterization of the three parameter Weibull distribution given by
f(y|\alpha_1,\alpha_2,\alpha_3)=\frac{\alpha_3}{\alpha_2}\left[\frac{y-\alpha_1}{\alpha_2}\right]^{\alpha_3-1} \exp\left[ -\left(\frac{y-\alpha_1}{\alpha_2} \right)^{\alpha_3} \right]
given by setting \alpha_1=\mu-\sigma/\nu
, \alpha_2=\sigma/\nu
, \alpha_3=1/\nu
.
RGE()
returns a gamlss.family
object which can be used to fit a reverse generalized extreme distribution in the gamlss()
function.
dRGE()
gives the density, pRGE()
gives the distribution
function, qRGE()
gives the quantile function, and rRGE()
generates random deviates.
This distribution is very difficult to fit because the y values depends
on the parameter values. The RS()
and CG()
algorithms are not appropriate for this type of problem.
Bob Rigby, Mikis Stasinopoulos and Kalliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
RGE()# default links for the reverse generalized extreme family distribution
newdata<-rRGE(100,mu=0,sigma=1,nu=5) # generates 100 random observations
# library(gamlss)
# gamlss(newdata~1, family=RGE, method=mixed(5,50)) # difficult to converse
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.