SI | R Documentation |
The SI()
function defines the Sichel distribution, a three parameter discrete distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dSI
, pSI
, qSI
and rSI
define the density, distribution function, quantile function and random
generation for the Sichel SI()
, distribution.
SI(mu.link = "log", sigma.link = "log", nu.link = "identity")
dSI(x, mu = 0.5, sigma = 0.02, nu = -0.5, log = FALSE)
pSI(q, mu = 0.5, sigma = 0.02, nu = -0.5, lower.tail = TRUE,
log.p = FALSE)
qSI(p, mu = 0.5, sigma = 0.02, nu = -0.5, lower.tail = TRUE,
log.p = FALSE, max.value = 10000)
rSI(n, mu = 0.5, sigma = 0.02, nu = -0.5)
tofyS(y, mu, sigma, nu, what = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive mu |
sigma |
vector of positive despersion parameter |
nu |
vector of nu |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
max.value |
a constant, set to the default value of 10000 for how far the algorithm should look for q |
y |
the y variable. The function |
what |
take values 1 or 2, for function |
The probability function of the Sichel distribution is given by
f(y|\mu,\sigma,\nu)= \frac{\mu^y K_{y+\nu}(\alpha)}{y! (\alpha \sigma)^{y+\nu} K_\nu(\frac{1}{\sigma})}
where \alpha^2=\frac{1}{\sigma^2}+\frac{2\mu}{\sigma}
, for y=0,1,2,...,\infty
where \mu>0
, \sigma>0
and -\infty <
\nu<\infty
and K_{\lambda}(t)=\frac{1}{2}\int_0^{\infty} x^{\lambda-1} \exp\{-\frac{1}{2}t(x+x^{-1})\}dx
is the
modified Bessel function of the third kind.
Note that the above parameterization is different from Stein, Zucchini and Juritz (1988) who use the above probability function but treat
\mu
, \alpha
and \nu
as the parameters. Note that \sigma=[(\mu^2+\alpha^2)^{\frac{1}{2}} -\mu ]^{-1}
. See also pp 510-511 of Rigby et al. (2019).
Returns a gamlss.family
object which can be used to fit a Sichel distribution in the gamlss()
function.
Akantziliotou C., Rigby, R. A., Stasinopoulos D. M. and Marco Enea
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \doi10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
Stein, G. Z., Zucchini, W. and Juritz, J. M. (1987). Parameter Estimation of the Sichel Distribution and its Multivariate Extension. Journal of American Statistical Association, 82, 938-944.
(see also https://www.gamlss.com/).
gamlss.family
, PIG
, NBI
,
NBII
SI()# gives information about the default links for the Sichel distribution
#plot the pdf using plot
plot(function(y) dSI(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf
# plot the cdf
plot(seq(from=0,to=100),pSI(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h") # cdf
# generate random sample
tN <- table(Ni <- rSI(100, mu=5, sigma=1, nu=1))
r <- barplot(tN, col='lightblue')
# fit a model to the data
# library(gamlss)
# gamlss(Ni~1,family=SI, control=gamlss.control(n.cyc=50))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.