SN2 | R Documentation |
The function SN2()
defines the Skew Normal Type 2 distribution, a three parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
, with parameters mu
, sigma
and nu
. The functions dSN2
, pSN2
, qSN2
and rSN2
define the density, distribution function, quantile function and random generation for the SN2
parameterization of the Skew Normal Type 2 distribution.
SN2(mu.link = "identity", sigma.link = "log", nu.link = "log")
dSN2(x, mu = 0, sigma = 1, nu = 2, log = FALSE)
pSN2(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qSN2(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rSN2(n, mu = 0, sigma = 1, nu = 2)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x, q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x] |
p |
vector of probabilities |
n |
number of observations. If |
The parameterization of the Skew Normal Type 2 distribution in the function SN2
is
f(y|\mu,\sigma,\nu)=\frac{c}{\sigma}\exp\left[\frac{1}{2} (\nu z)^2\right]
if y<\mu
f(y|\mu,\sigma,\nu)=\frac{c}{\sigma}\exp\left[\frac{1}{2} (\frac{z}{\nu})^2\right]
if y\ge\mu
for (-\infty<y<+\infty)
, (-\infty<\mu<+\infty)
, \sigma>0
and \nu>0
where z=(y-\mu)/ \sigma
and c=\sqrt{2} \nu /\left[ \sqrt{\pi}(1+\nu^2) \right]
see pp. 380-381 of Rigby et al. (2019).
returns a gamlss.family object which can be used to fit a Skew Normal Type 2 distribution in the gamlss()
function.
This is a special case of the Skew Exponential Power type 3 distribution (SEP3
)where tau=2
.
Mikis Stasinopoulos, Bob Rigby and Fiona McElduff.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
par(mfrow=c(2,2))
y<-seq(-3,3,0.2)
plot(y, dSN2(y), type="l" , lwd=2)
q<-seq(-3,3,0.2)
plot(q, pSN2(q), ylim=c(0,1), type="l", lwd=2)
p<-seq(0.0001,0.999,0.05)
plot(p, qSN2(p), type="l", lwd=2)
dat <- rSN2(100)
hist(rSN2(100), nclass=30)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.