ZAIG | R Documentation |
The function ZAIG()
defines the zero adjusted Inverse Gaussian distribution, a three parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. The zero adjusted Inverse Gaussian distribution is similar to the Inverse Gaussian distribution
but allows zeros as y values. The extra parameter models
the probabilities at zero.
The functions dZAIG
, pZAIG
, qZAIG
and rZAIG
define the density, distribution function, quantile function and random
generation for the ZAIG
parameterization of the zero adjusted Inverse Gaussian distribution.
plotZAIG
can be used to plot the distribution. meanZAIG
calculates the expected value of the response for a fitted model.
ZAIG(mu.link = "log", sigma.link = "log", nu.link = "logit")
dZAIG(x, mu = 1, sigma = 1, nu = 0.1, log = FALSE)
pZAIG(q, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)
qZAIG(p, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)
rZAIG(n, mu = 1, sigma = 1, nu = 0.1, ...)
plotZAIG(mu = 5, sigma = 1, nu = 0.1, from = 0, to = 10, n = 101,
main = NULL,...)
meanZAIG(obj)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of probability at zero parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
from |
where to start plotting the distribution from |
to |
up to where to plot the distribution |
obj |
a fitted |
main |
for title in the plot |
... |
|
The Zero adjusted IG distribution is given as
f(y|\mu,\sigma\,\nu)=\nu
if (y=0)
f(y|\mu,\sigma,\nu)=(1-\nu)\frac{1}{\sqrt{2 \pi \sigma^2 y^3}} \exp(- \frac{(y-\mu)^2}{2\mu^2\sigma^2y})
otherwise
for y=(0,\infty)
, \mu>0
, \sigma>0
and 0< \nu< 1
.
E(y)=(1-\nu)\mu
and Var(y)=(1-\nu)\mu^2(\nu+\mu\sigma^2)
.
returns a gamlss.family
object which can be used to fit a zero adjusted inverse Gaussian distribution in the gamlss()
function.
Bob Rigby and Mikis Stasinopoulos
Heller, G. Stasinopoulos M and Rigby R.A. (2006) The zero-adjusted Inverse Gaussian distribution as a model for insurance claims. in Proceedings of the 21th International Workshop on Statistial Modelling, eds J. Hinde, J. Einbeck and J. Newell, pp 226-233, Galway, Ireland.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family
, IG
ZAIG()# gives information about the default links for the ZAIG distribution
# plotting the distribution
plotZAIG( mu =10 , sigma=.5, nu = 0.1, from = 0, to=10, n = 101)
# plotting the cdf
plot(function(y) pZAIG(y, mu=10 ,sigma=.5, nu = 0.1 ), 0, 1)
# plotting the inverse cdf
plot(function(y) qZAIG(y, mu=10 ,sigma=.5, nu = 0.1 ), 0.001, .99)
# generate random numbers
dat <- rZAIG(100,mu=10,sigma=.5, nu=.1)
# fit a model to the data
# library(gamlss)
# m1<-gamlss(dat~1,family=ZAIG)
# meanZAIG(m1)[1]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.