ZAP | R Documentation |
The function ZAP
defines the zero adjusted Poisson distribution, a two parameter distribution, for a gamlss.family
object to be
used in GAMLSS fitting using the function gamlss()
. The functions dZAP
, pZAP
, qZAP
and rZAP
define the
density, distribution function, quantile function
and random generation for the inflated poisson, ZAP()
, distribution.
ZAP(mu.link = "log", sigma.link = "logit")
dZAP(x, mu = 5, sigma = 0.1, log = FALSE)
pZAP(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZAP(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZAP(n, mu = 5, sigma = 0.1)
mu.link |
defines the |
sigma.link |
defines the |
x |
vector of (non-negative integer) |
mu |
vector of positive means |
sigma |
vector of probabilities at zero |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Details about the zero adjusted Poison, ZAP
can be found pp 494-496 of Rigby et al. (2019).
The function ZAP
returns a gamlss.family
object which can be used to fit a zero inflated poisson distribution in the gamlss()
function.
Mikis Stasinopoulos, Bob Rigby
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/)..
gamlss.family
, PO
, ZIP
, ZIP2
, ZALG
ZAP()
# creating data and plotting them
dat<-rZAP(1000, mu=5, sigma=.1)
r <- barplot(table(dat), col='lightblue')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.