R/all_functions.R

Defines functions `inducedChainGraph` `RepMarDAG` RepMarBG RepMarUG `MarkEqMag` MarkEqRcg `MAG` `MSG` `MRG` msep Max `AG` `SG` `RG` `grMAT` `likGau` `RR` `SPl` `rem` `blkdiag` `marg.param` `fitmlogit` `blodiag` `diagv` `null` `powerset` `mat.mlogit` `binve` `plotGraph` `isADMG` `isAG` `DG` `unmakeMG` `makeMG` `transClos` `isAcyclic` `In` `icfmag` `fitCovGraph` `fitConGraph` `fitAncestralGraph` `drawGraph` `conComp` `checkIdent`

Documented in MarkEqRcg Max msep RepMarBG RepMarUG

"adjMatrix" <-
  function(A) {
    ### From the edge matrix to the adjacency matrix
    E <- t(A)
    diag(E) <- 0
    E
  }





"allEdges" <-
  function(amat) {
    ### Finds all the edges of a graph with edge matrix amat.
    nn <- 1:nrow(amat)
    E <- c()
    if (all(amat == t(amat))) {
      amat[lower.tri(amat)] <- 0
    }
    for (i in nn) {
      e <- nn[amat[i, ] == 1]
      if (length(e) == 0) next
      li <- cbind(i, e)
      dimnames(li) <- list(rep("", length(e)), rep("", 2))
      E <- rbind(E, li)
    }
    E
  }





"basiSet" <-
  function(amat) {
    ### Basis set of a DAG with adjacency matrix amat.
    amat <- topSort(amat)
    nod <- rownames(amat)
    dv <- length(nod)
    ind <- NULL
    ## NOTE. This is correct if the adj mat is upper triangular.
    for (r in 1:dv) {
      for (s in r:dv) {
        if ((amat[r, s] != 0) | (s == r)) {
          next
        } else {
          ed <- nod[c(r, s)]
          pa.r <- nod[amat[, r] == 1]
          pa.s <- nod[amat[, s] == 1]
          dsep <- union(pa.r, pa.s)
          dsep <- setdiff(dsep, ed)
          b <- list(c(ed, dsep))
          ind <- c(ind, b)
        }
      }
    }
    ##      ind <- lapply(ind, function(x) nn[x])
    ind
  }


"bd" <-
  function(nn, amat) {
    ### Boundary of the nodes nn for a graph with adjacency matrix amat.
    nod <- rownames(amat)
    if (is.null(nod)) stop("The edge matrix must have dimnames!")
    if (!all(is.element(nn, nod))) stop("Some of the nodes are not among the vertices.")
    b <- vector(length(nn), mode = "list")
    diag(amat) <- 0 # As you do not want the node itself in the list
    k <- length(nn)
    for (i in 1:k) {
      b[[i]] <- c(nod[amat[nn[i], ] == 1], nod[amat[, nn[i]] == 1])
    }
    b <- unique(unlist(b))
    setdiff(b, nn)
  }

"ch" <-
  function(nn, amat) {
    ### List of the children of nodes nn for a given with adjacency matrix amat.
    nod <- rownames(amat)
    if (is.null(nod)) stop("The adjacency matrix must have dimnames!")
    if (!all(is.element(nn, nod))) stop("Some of the nodes are not among the vertices.")
    k <- length(nn)
    p <- vector(k, mode = "list")
    A <- 0 + ((amat != t(amat)) & (amat == 1)) # Select the directed edges
    for (i in 1:k) {
      p[[i]] <- nod[A[nn[i], ] == 1]
    }
    setdiff(unique(unlist(p)), nn)
  }


"pa" <-
  function(nn, amat) {
    ### List of the parents of nodes nn for a given with adjacency matrix amat.
    nod <- rownames(amat)
    if (is.null(nod)) stop("The adjacency matrix must have dimnames!")
    if (!all(is.element(nn, nod))) stop("Some of the nodes are not among the vertices.")
    k <- length(nn)
    p <- vector(k, mode = "list")
    A <- 0 + ((amat != t(amat)) & (amat == 1)) # Select the directed edges
    for (i in 1:k) {
      p[[i]] <- nod[A[, nn[i]] == 1]
    }
    setdiff(unique(unlist(p)), nn)
  }




"bfsearch" <-
  function(amat, v = 1) {
    ### Breadth-first search of a connected UG with adjacency matrix amat.
    n <- nrow(amat)
    indices <- 1:n
    if (n == 1) {
      return(NULL)
    }
    visited <- rep(0, n)
    Q <- c()
    tree <- matrix(0, n, n)
    dimnames(tree) <- dimnames(amat)
    E <- c()
    visited[v] <- 1
    Q <- c(v, Q)
    while (!all(visited == 1)) {
      x <- Q[1]
      Q <- Q[-1]
      ## b <- bd(x, amat)
      b <- indices[amat[x, ] == 1] # Boundary of x. Assumes that amat is symmetric
      for (y in b) {
        if (visited[y] == 0) {
          visited[y] <- 1
          Q <- c(Q, y)
          tree[x, y] <- 1
          tree[y, x] <- 1
          E <- rbind(E, c(x, y))
        }
      }
    }
    cross <- amat - tree
    V <- allEdges(cross)
    dimnames(E) <- list(rep("", nrow(E)), rep("", 2))
    list(tree = tree, branches = E, chords = V)
  }






`checkIdent` <- function(amat, latent) {
  ### Checks SW sufficient conditions for identifiability of a DAG
  ### with adjacency matrix edge amat and one latent variable.
  "allSubsets" <-
    function(n) {
      ## Returns all subsets of n
      p <- length(n)
      H <- data.matrix(expand.grid(rep(list(1:2), p))) - 1
      H <- split(H == 1, row(H))
      lapply(H, function(i) n[i])
    }

  nod <- rownames(amat)
  if (is.null(nod)) stop("The adjacency matrix must have dimnames.")
  gcov <- inducedCovGraph(amat, sel = nod, cond = NULL)
  gcov <- sign(gcov)
  L <- latent
  if (length(L) > 1) {
    stop("I have an answer only for one latent variable.")
  }
  O <- setdiff(nod, L)
  m <- bd(L, gcov)
  ## Theorem 1
  if (length(m) > 2) {
    G <- inducedCovGraph(amat, sel = O, cond = L)
    G <- sign(G)
    cond.i <- isGident(G[m, m, drop = FALSE])
  } else {
    cond.i <- FALSE
  }
  gcon <- inducedConGraph(amat, sel = nod, cond = NULL)
  gcon <- sign(gcon)
  cc <- bd(L, gcon)
  if (length(cc) > 2) {
    cond.ii <- isGident(gcon[cc, cc, drop = FALSE])
  } else {
    cond.ii <- FALSE
  }
  ## Theorem 2 (revised)
  a <- union(pa(L, amat), ch(L, amat))
  if (length(a) > 2) {
    Oa <- setdiff(O, a) # O \ a
    S.a <- inducedCovGraph(amat, sel = union(Oa, L), cond = a)
    S.a <- sign(S.a)
    first <- S.a[Oa, L]
    first <- Oa[first == 0] # variables that satisfy condition (i) of thm. 2.
    if (length(first) == 0) {
      cond.iii <- FALSE
    } else {
      cond.iii <- FALSE
      H <- allSubsets(first) # in all subsets of these variables
      for (h in H) { # look for a G-identifiable cov. or con. graph
        isgid <- isGident(sign(inducedCovGraph(amat, sel = a, cond = union(L, h))))
        if (isgid) {
          cond.iii <- TRUE
          break
        } else {
          isgid <- isGident(sign(inducedConGraph(amat, sel = a, cond = union(L, h))))
          if (isgid) {
            cond.iii <- TRUE
            break
          }
        }
      }
    }
    second <- setdiff(O, m) # variables that satisfy condition (ii) of thm. 2.
    if (length(second) == 0) {
      cond.iv <- FALSE
    } else {
      cond.iv <- FALSE
      H <- allSubsets(second) # in all subsets of these variables
      for (h in H) { # look for a G-identifiable cov. or con. graph
        isgid <- isGident(sign(inducedCovGraph(amat, sel = a, cond = union(L, h))))
        if (isgid) {
          cond.iv <- TRUE
          break
        } else {
          isgid <- isGident(sign(inducedConGraph(amat, sel = a, cond = union(L, h))))
          if (isgid) {
            cond.iv <- TRUE
            break
          }
        }
      }
    }
  } else {
    cond.iii <- FALSE
    cond.iv <- FALSE
  }
  c(
    T1.i = cond.i, T1.ii = cond.ii,
    T2.i = cond.iii, T2.ii = cond.iv
  )
}






"cmpGraph" <-
  function(amat) {
    ### Adjacency matrix of the complementary graph
    g <- 1 * !amat
    diag(g) <- 0
    g
  }





`conComp` <- function(amat, method = 1)
### Finds the connected components of an UG graph from its adjacency matrix amat.
{
  if (!all(amat == t(amat))) {
    stop("Not an undirected graph.")
  }
  if (method == 2) {
    u <- clusters(graph.adjacency(amat, mode = "undirected"))$membership + 1
    return(u)
  } else if (method == 1) {
    A <- transClos(amat)
    diag(A) <- 1
    n <- nrow(A)
    A <- sign(A + t(A))
    u <- A %*% 2^((n - 1):0)
    return(match(u, unique(u)))
  } else {
    stop("Wrong method.")
  }
}





"correlations" <-
  function(x) {
    ### Marginal correlations (lower half) and
    ### partial correlations given all remaining variables (upper half).

    if (is.data.frame(x)) {
      r <- cor(x)
    } else { # Recomputes the corr matrix
      Dg <- 1 / sqrt(diag(x))
      r <- x * outer(Dg, Dg)
    }
    rp <- parcor(r)
    r[upper.tri(r)] <- rp[upper.tri(rp)]
    r
  }





"cycleMatrix" <-
  function(amat) {
    ### Fundamental Cycle matrix of the UG amat.
    fc <- fundCycles(amat) # Edges of the fundamental cycles
    E <- allEdges(amat) # All the edges of the graph
    n <- nrow(E) # Number of edges
    k <- length(fc) # Number of FC
    if (k == 0) {
      return(NULL)
    }
    cmat <- matrix(0, k, n)
    for (cy in 1:k) {
      M <- fc[[cy]] # Edges in cycle cy
      for (j in 1:nrow(M)) {
        e <- sort(M[j, ])
        for (i in 1:n) {
          cmat[cy, i] <- cmat[cy, i] | all(E[i, ] == e)
        }
      }
    }
    dimnames(cmat) <- list(1:k, paste(E[, 1], E[, 2]))
    cmat
  }





"DAG" <-
  function(..., order = FALSE) {
    ### Defines a DAG from a set of equations (defined with model formulae).
    f <- list(...)
    nb <- length(f) # nb is the number of model formulae (of blocks)
    nod <- c() # Counts the number of nodes
    for (k in 1:nb) {
      tt <- terms(f[[k]], specials = "I")
      vars <- dimnames(attr(tt, "factors"))[[1]]
      skip <- attr(tt, "specials")$I
      if (!is.null(skip)) {
        vars <- vars[-skip]
      }
      nod <- c(nod, vars)
    }
    N <- unique(nod) # set of nodes
    dN <- length(N) # number of nodes
    amat <- matrix(0, dN, dN)
    for (k in 1:nb) {
      tt <- terms(f[[k]], specials = "I")
      vars <- dimnames(attr(tt, "factors"))[[1]]
      if (attr(tt, "response") == 1) {
        j <- match(vars[1], N)
        i <- match(vars[-1], N)
        amat[i, j] <- 1
      } else if (attr(tt, "response") == 0) {
        stop("Some equations have no response")
      }
    }
    if (!isAcyclic(amat)) {
      warning("The graph contains directed cycles!")
    }
    dimnames(amat) <- list(N, N)
    if (order) {
      amat <- topSort(amat)
    }
    amat
  }





`drawGraph` <- function(amat, coor = NULL, adjust = FALSE, alpha = 1.5, beta = 3,
                        lwd = 1, ecol = "blue", bda = 0.1, layout = layout.auto) {
  if (is.null(dimnames(amat))) {
    rownames(a) <- 1:ncol(amat)
    colnames(a) <- 1:ncol(amat)
  }
  if (all(amat == t(amat)) & all(amat[amat != 0] == 1)) {
    amat <- amat * 10
  }
  `lay` <- function(a, directed = TRUE, start = layout) {
    if (class(a)[1] == "igraph" || class(a)[1] == "graphNEL" || class(a)[1] ==
      "character") {
      a <- grMAT(a)
    }
    if (is(a, "matrix")) {
      if (nrow(a) == ncol(a)) {
        if (length(rownames(a)) != ncol(a)) {
          rownames(a) <- 1:ncol(a)
          colnames(a) <- 1:ncol(a)
        }
        if (!directed) {
          if (all(a == t(a)) & all(a[a != 0] == 1)) {
            a <- a * 10
          }
        }
        l1 <- c()
        l2 <- c()
        for (i in 1:nrow(a)) {
          for (j in i:nrow(a)) {
            if (a[i, j] == 1) {
              l1 <- c(l1, i, j)
              l2 <- c(l2, 2)
            }
            if (a[j, i] %% 10 == 1) {
              l1 <- c(l1, j, i)
              l2 <- c(l2, 2)
            }
            if (a[i, j] == 10) {
              l1 <- c(l1, i, j)
              l2 <- c(l2, 0)
            }
            if (a[i, j] == 11) {
              l1 <- c(l1, i, j, i, j)
              l2 <- c(l2, 2, 0)
            }
            if (a[i, j] == 100) {
              l1 <- c(l1, i, j)
              l2 <- c(l2, 3)
            }
            if (a[i, j] == 101) {
              l1 <- c(l1, i, j, i, j)
              l2 <- c(l2, 2, 3)
            }
            if (a[i, j] == 110) {
              l1 <- c(l1, i, j, i, j)
              l2 <- c(l2, 0, 3)
            }
            if (a[i, j] == 111) {
              l1 <- c(l1, i, j, i, j, i, j)
              l2 <- c(l2, 2, 0, 3)
            }
          }
        }
      } else {
        stop("'object' is not in a valid adjacency matrix form")
      }
      if (length(l1) > 0) {
        ## l1 <- l1 - 1   # igraph0
        agr <- graph(l1, n = nrow(a), directed = TRUE)
      }
    } else {
      stop("'object' is not in a valid format")
    }
    x <- start(agr)
    x[, 1] <- 10 + 80 * (x[, 1] - min(x[, 1])) / (max(x[, 1]) - min(x[, 1]))
    x[, 2] <- 10 + 80 * (x[, 2] - min(x[, 2])) / (max(x[, 2]) - min(x[, 2]))
    x
  }
  plot.dots <- function(xy, v, dottype, n, beta) {
    for (i in 1:n) {
      if (dottype[i] == 1) {
        points(xy[i, 1], xy[i, 2],
          pch = 1, cex = 1.2,
          lwd = lwd
        )
      } else if (dottype[i] == 2) {
        points(xy[i, 1], xy[i, 2], pch = 16, cex = 1.2)
      }
    }
    text(xy[, 1] - beta, xy[, 2] + 2 * beta, v, cex = 1.2)
  }
  angle <- function(v, alpha = pi / 2) {
    theta <- Arg(complex(real = v[1], imaginary = v[2]))
    z <- complex(argument = theta + alpha)
    c(Re(z), Im(z))
  }
  double.edges <- function(x1, x2, y1, y2, lwd, ecol) {
    d <- 50
    n <- 30
    dd <- 2
    k <- length(x1)
    if (is.na(x1)) {
      return()
    }
    for (i in 1:k) {
      x <- c(x1[i], x2[i])
      y <- c(y1[i], y2[i])
      m <- (x + y) / 2
      cen <- m + d * angle(y - x)
      xm <- x - cen
      ym <- y - cen
      thetax <- Arg(complex(real = xm[1], imaginary = xm[2]))
      thetay <- Arg(complex(real = ym[1], imaginary = ym[2]))
      theta <- seq(thetax, thetay, len = n)
      l <- crossprod(y - m)
      delta <- sqrt(d^2 + l)
      lx <- cen[1] + delta * cos(theta)
      ly <- cen[2] + delta * sin(theta)
      lines(lx, ly, lty = 2, col = ecol, lwd = lwd)
      vy <- angle(y - cen)
      vx <- angle(x - cen)
      vx1 <- x + dd * angle(vx, alpha = pi / 12)
      vx2 <- x + dd * angle(vx, alpha = -pi / 12)
      vy1 <- y + dd * angle(vy, alpha = 11 * pi / 12)
      vy2 <- y + dd * angle(vy, alpha = -11 * pi / 12)
      segments(x[1], x[2], vx1[1], vx1[2],
        col = ecol,
        lwd = lwd
      )
      segments(x[1], x[2], vx2[1], vx2[2],
        col = ecol,
        lwd = lwd
      )
      segments(y[1], y[2], vy1[1], vy1[2],
        col = ecol,
        lwd = lwd
      )
      segments(y[1], y[2], vy2[1], vy2[2],
        col = ecol,
        lwd = lwd
      )
      ex <- x + 0.05 * (y - x)
      ey <- x + 0.95 * (y - x)
      arrows(ex[1], ex[2], ey[1], ey[2],
        lty = 1, code = 1,
        angle = 20, length = 0.1, lwd = lwd, col = ecol
      )
    }
  }
  draw.edges <- function(coor, u, alpha, type, lwd, ecol, bda) {
    for (k in 1:nrow(u)) {
      a <- coor[u[k, 1], ]
      b <- coor[u[k, 2], ]
      ba <- b - a
      ba <- ba / sqrt(sum(ba * ba))
      x <- a + ba * alpha
      y <- b - ba * alpha
      switch(type + 1,
        segments(x[1], x[2], y[1], y[2],
          lty = 1, lwd = lwd, col = ecol
        ),
        arrows(x[1],
          x[2], y[1], y[2],
          code = 2, angle = 20, length = 0.1,
          lty = 1, lwd = lwd, col = ecol
        ),
        arrows(x[1],
          x[2], y[1], y[2],
          code = 3, angle = 20, length = bda,
          lty = 5, lwd = lwd, col = ecol
        ),
        double.edges(x[1],
          x[2], y[1], y[2],
          lwd = lwd, ecol
        )
      )
    }
  }
  #     def.coor <- function(ce, k, h, w) {
  #         if (k == 1)
  #             return(ce)
  #         else if (k == 2) {
  #             r1 <- c(ce[1], ce[1])
  #             r2 <- c(ce[2] + h * 0.3, ce[2] - h * 0.3)
  #         }
  #         else if (k == 3) {
  #             r1 <- c(ce[1], ce[1], ce[1])
  #             r2 <- c(ce[2] + h * 0.25, ce[2], ce[2] - h * 0.25)
  #         }
  #         else if (k == 4) {
  #             r1 <- c(ce[1] - w * 0.3, ce[1] + w * 0.3, ce[1] +
  #                 w * 0.3, ce[1] - w * 0.3)
  #             r2 <- c(ce[2] - h * 0.3, ce[2] - h * 0.3, ce[2] +
  #                 h * 0.3, ce[2] + h * 0.3)
  #         }
  #         else {
  #             a <- 1
  #             z <- seq(a, a + 2 * pi, len = k + 1)
  #             z <- z[-1]
  #             r1 <- ce[1] + w/2.5 * cos(z)
  #             r2 <- ce[2] + h/2.5 * sin(z)
  #         }
  #         cbind(r1, r2)
  #     }
  #     def.coor.dag <- function(amat, w, h, left) {
  #         nod <- rownames(amat)
  #         o <- topOrder(amat)
  #         if (left)
  #             o <- rev(o)
  #         k <- length(nod)
  #         x <- seq(0, 100, len = k)
  #         y <- rep(c(20, 40, 60, 80), ceiling(k/4))[1:k]
  #         xy <- cbind(x, y)
  #         rownames(xy) <- nod[o]
  #         xy[nod, ]
  #     }
  v <- parse(text = rownames(amat))
  n <- length(v)
  dottype <- rep(1, n)
  old <- par(mar = c(0, 0, 0, 0))
  on.exit(par(old))
  plot(c(0, 100), c(0, 100),
    type = "n", axes = FALSE, xlab = "",
    ylab = ""
  )
  center <- matrix(c(50, 50), ncol = 2)
  if (is.null(coor)) {
    coor <- lay(amat)
    #         isdag <- isAcyclic(amat)
    #         if (isdag)
    #             coor <- def.coor.dag(amat, 100, 100, left = left)
    #         else coor <- def.coor(center, n, 100, 100)
  }
  g0 <- amat * ((amat == 10) & (t(amat) == 10))
  g0[lower.tri(g0)] <- 0
  g1 <- amat * ((amat == 1) & !((amat > 0) & (t(amat) > 0)))
  g2 <- amat * ((amat == 100) & (t(amat) == 100))
  g2[lower.tri(g2)] <- 0
  g3 <- (amat == 101) + 0
  i <- expand.grid(1:n, 1:n)
  u0 <- i[g0 > 0, ]
  u1 <- i[g1 > 0, ]
  u2 <- i[g2 > 0, ]
  u3 <- i[g3 > 0, ]
  if (nrow(coor) != length(v)) {
    stop("Wrong coordinates of the vertices.")
  }
  plot.dots(coor, v, dottype, n, beta)
  draw.edges(coor, u0, alpha, type = 0, lwd = lwd, ecol, bda)
  draw.edges(coor, u1, alpha, type = 1, lwd = lwd, ecol, bda)
  draw.edges(coor, u2, alpha, type = 2, lwd = lwd, ecol, bda)
  draw.edges(coor, u3, alpha, type = 3, lwd = lwd, ecol, bda)
  if (adjust) {
    repeat {
      xnew <- unlist(locator(1))
      if (length(xnew) == 0) {
        break
      }
      d2 <- (xnew[1] - coor[, 1])^2 + (xnew[2] - coor[
        ,
        2
      ])^2
      i <- (1:n)[d2 == min(d2)]
      coor[i, 1] <- xnew[1]
      coor[i, 2] <- xnew[2]
      plot(c(0, 100), c(0, 100),
        type = "n", axes = FALSE,
        xlab = "", ylab = ""
      )
      plot.dots(coor, v, dottype, n, beta)
      draw.edges(coor, u0, alpha,
        type = 0, lwd = lwd,
        ecol, bda
      )
      draw.edges(coor, u1, alpha,
        type = 1, lwd = lwd,
        ecol, bda
      )
      draw.edges(coor, u2, alpha,
        type = 2, lwd = lwd,
        ecol, bda
      )
      draw.edges(coor, u3, alpha,
        type = 3, lwd = lwd,
        ecol, bda
      )
    }
  }
  colnames(coor) <- c("x", "y")
  return(invisible(coor))
}





"dSep" <-
  function(amat, first, second, cond) {
    ### Are first and second d-Separated by cond in a DAG?
    e <- inducedCovGraph(amat, sel = c(first, second), cond = cond)
    all(e[first, second] == 0)
  }





"edgematrix" <-
  function(E, inv = FALSE) {
    ### From the adjacency matrix to the edge matrix
    E <- sign(E)
    if (inv) {
      ord <- topOrder(E)
      ord <- rev(ord) # Inverse topological order: Nanny ordering.
      E <- E[ord, ord]
    }
    A <- t(E)
    diag(A) <- 1
    A
  }





"essentialGraph" <-
  function(dagx) {
    ### Converts a DAG into Essential Graph.
    ### Is implemented by the algorithm by D.M.Chickering (1995).
    ### A transformational characterization of equivalent Bayesian network
    ### structures. Proceedings of Eleventh Conference on Uncertainty in
    ### Artificial Intelligence, Montreal, QU, pages 87-98. Morgan Kaufmann
    ### http://research.microsoft.com/~dmax/publications/uai95.pdf
    ### Implemented in Matlab by Tomas Kocka, AAU.
    ### Translated in R by Giovanni Marchetti, University of Florence.

    ord <- topOrder(dagx) # get the topological order of nodes
    n <- nrow(dagx) # gets the number of nodes
    i <- expand.grid(1:n, 1:n) # finds all nonzero elements in the adj matrix
    IJ <- i[dagx == 1, ] # sort the arcs from lowest possible y
    I <- IJ[, 1]
    J <- IJ[, 2] # and highest possible x, arcs are x->y
    e <- 1
    for (y in 1:n) {
      for (x in n:1) {
        if (dagx[ord[x], ord[y]] == 1) {
          I[e] <- ord[x]
          J[e] <- ord[y]
          e <- e + 1
        }
      }
    }
    ## Now we have to decide which arcs are part of the essential graph and
    ## which are undirected edges in the essential graph.
    ## Undecided arc in the DAG are 1, directed in EG are 2 and undirected in EG are 3.

    for (e in 1:length(I)) {
      if (dagx[I[e], J[e]] == 1) {
        cont <- TRUE
        for (w in 1:n) {
          if (dagx[w, I[e]] == 2) {
            if (dagx[w, J[e]] != 0) {
              dagx[w, J[e]] <- 2
            } else {
              for (ww in 1:n) {
                if (dagx[ww, J[e]] != 0) {
                  dagx[ww, J[e]] <- 2
                }
              } # skip the rest and start with another arc from the list
              w <- n
              cont <- FALSE
            }
          }
        }
        if (cont) {
          exists <- FALSE
          for (z in 1:n) {
            if ((dagx[z, J[e]] != 0) & (z != I[e]) & (dagx[z, I[e]] == 0)) {
              exists <- TRUE
              for (ww in 1:n) {
                if (dagx[ww, J[e]] == 1) {
                  dagx[ww, J[e]] <- 2
                }
              }
            }
          }
          if (!exists) {
            for (ww in 1:n) {
              if (dagx[ww, J[e]] == 1) {
                dagx[ww, J[e]] <- 3
              }
            }
          }
        }
      }
    }
    (dagx == 2) + (dagx == 3) + t(dagx == 3)
  }





"findPath" <-
  function(amat, st, en, path = c()) {
    ### Find a path between nodes st and en in a UG with adjacency mat. amat.
    indices <- 1:nrow(amat)
    if (st == en) { # st is 'node' in recursive calls
      return(c(path, st))
    }
    if (sum(amat[st, ]) == 0) {
      return(NULL)
    }
    ## ne <- bd(st,amat)
    ne <- indices[amat[st, ] == 1] # Boundary of x. Assumes that amat is symmetric
    for (node in ne) {
      if (!is.element(node, c(path, st))) {
        newpath <- findPath(amat, node, en, c(path, st))
        if (!is.null(newpath)) {
          return(newpath)
        }
      }
    }
  }





`fitAncestralGraph` <-
  function(amat, S, n, tol = 1e-06) {
    ### Fit Ancestral Graphs. Mathias Drton, 2003 2009. It works for ADMGs
    nam <- rownames(S)
    nod <- rownames(amat)
    ## permute graph to have same layout as S
    if (is.null(nod)) {
      stop("The adjacency matrix has no labels!")
    }
    if (!all(is.element(nod, nam))) {
      stop("The nodes of the graph do not match the names of the variables")
    } else {
      sek <- intersect(nam, nod)
    }
    S <- S[sek, sek, drop = FALSE] # Resizes eventually S
    amat <- amat[sek, sek, drop = FALSE] # and reorders amat

    temp <- icfmag(amat, S, tol)
    p <- ncol(S)
    df <- p * (p - 1) / 2 - sum(In(amat + t(amat))) / 2 # Degrees of freedom
    dev <- likGau(solve(temp$Sigmahat), S, n, p)
    if (is.null(temp$Bhat)) {
      Beta <- NULL
    } else {
      ## Beta <- diag(1,p)-temp$Bhat
      Beta <- temp$Bhat
    }
    return(list(
      Shat = temp$Sigmahat, Lhat = temp$Lambdahat, Bhat = Beta,
      Ohat = temp$Omegahat, dev = dev, df = df, it = temp$iterations
    ))
  }

`fitConGraph` <- function(amat, S, n, cli = NULL, alg = 3, pri = FALSE, tol = 1e-06) {
  ### Fits a concentration graph G.
  ### Now it does not compute the cliques of the graph.

  nam <- rownames(S)
  nod <- rownames(amat)
  if (is.null(nod)) {
    stop("The adjacency matrix has no labels.")
  }
  if (!all(is.element(nod, nam))) {
    stop("The nodes of the graph do not match the names of the variables.")
  } else {
    sek <- intersect(nam, nod)
  }
  S <- S[sek, sek, drop = FALSE] # Resizes eventually S
  amat <- amat[sek, sek, drop = FALSE] # and reorders amat
  nod <- rownames(amat)
  if (all(amat == 0)) {
    alg <- 2
    cli <- as.list(nod)
  }
  if (is.null(cli)) {
    alg <- 3
  } else {
    alg <- 2
    nc <- length(cli)
    if (nc == 1) {
      return(list(Shat = S, dev = 0, df = 0, it = 1))
    }
  }

  k <- ncol(S)

  if (alg == 1) { # First algorithm by Whittaker (needs the cliques)
    it <- 0
    W <- diag(diag(S)) # Starting value
    dimnames(W) <- dimnames(S)
    repeat {
      W.old <- W
      it <- it + 1
      for (i in 1:nc) {
        a <- cli[[i]]
        b <- setdiff(nod, a)
        Saa <- S[a, a]
        Waa <- W[a, a]
        Wba <- W[b, a]
        Wbb <- W[b, b]
        B <- Wba %*% solve(Waa)
        Spar <- Wbb - B %*% Waa %*% t(B)
        BV <- B %*% Saa
        W[b, a] <- BV
        W[a, b] <- t(BV)
        W[a, a] <- Saa
        W[b, b] <- Spar + BV %*% t(B)
      }
      if (sum(abs(W - W.old)) < tol) break
    }
  } else if (alg == 2) { # Second algorithm by Whittaker  (needs the cliques)
    it <- 0
    K <- solve(diag(diag(S))) # Starting value
    dimnames(K) <- dimnames(S)
    repeat {
      K.old <- K
      it <- it + 1
      for (i in 1:nc) {
        a <- cli[[i]]
        b <- setdiff(nod, a)
        K[a, a] <- solve(S[a, a]) + K[a, b] %*% solve(K[b, b]) %*% K[b, a]
        if (pri) {
          dev <- likGau(K, S, n, k)
          cat(dev, "\n")
        }
      }
      if (sum(abs(K - K.old)) < tol) break
    }
    W <- solve(K)
  } else if (alg == 3) { # Hastie Friedman Tibshirani p. 791
    W0 <- S
    W <- S
    it <- 0
    converge <- FALSE
    while (!converge) {
      it <- it + 1
      for (j in 1:k) {
        W11 <- W[-j, -j, drop = FALSE]
        w12 <- W[-j, j]
        s12 <- S[-j, j, drop = FALSE]
        paj <- amat[j, ] == 1 # neighbors
        paj <- paj[-j]
        beta <- rep(0, k - 1)
        if (all(!paj)) {
          w <- rep(0, k - 1)
        } else {
          beta[paj] <- solve(W11[paj, paj], s12[paj, ])
          w <- W11 %*% beta
        }
        W[-j, j] <- w
        W[j, -j] <- w
      }
      di <- norm(W0 - W)
      if (pri) {
        cat(di, "\n")
      }
      if (di < tol) {
        converge <- TRUE
      } else {
        W0 <- W
      }
    }
  }
  df <- (sum(1 - amat) - k) / 2
  Kh <- solve(W)
  dev <- likGau(Kh, S, n, k)
  list(Shat = W, dev = dev, df = df, it = it)
}




`fitCovGraph` <-
  function(amat, S, n, alg = "icf", dual.alg = 2, start.icf = NULL, tol = 1e-06) {
    ### Fits a Covariance Graph. Mathias Drton, 2003
    ### amat: adjacency matrix; S: covariance matrix; n: sample size.
    amat <- In(amat) # Forces the ones in a bidirected graph defined with makeMG
    nam <- rownames(S)
    nod <- rownames(amat)
    if (is.null(nod)) {
      stop("The adjacency matrix has no labels.")
    }
    if (!all(is.element(nod, nam))) {
      stop("The nodes of the graph do not match the names of the variables.")
    } else {
      sek <- intersect(nam, nod)
    }
    S <- S[sek, sek, drop = FALSE] # Resizes eventually S
    amat <- amat[sek, sek, drop = FALSE] # and reorders amat

    if (alg == "icf") {
      temp <- icf(amat, S, start.icf, tol)
    } else {
      if (alg == "dual") {
        Sinv <- solve(S)
        temp <- fitConGraph(amat, Sinv, n, pri = FALSE, alg = dual.alg, tol = 1e-06)
        temp <- list(Sigmahat = zapsmall(solve(temp$Shat)), iterations = temp$it)
      } else {
        stop("Algorithm misspecified!")
      }
    }

    df <- sum(amat[upper.tri(amat)] == 0) # Degrees of freedom
    k <- ncol(S)
    dev <- likGau(solve(temp$Sigmahat), S, n, k)
    return(list(Shat = temp$Sigmahat, dev = dev, df = df, it = temp$iterations))
  }





"fitDag" <-
  function(amat, S, n) {
    ### Fits linear recursive regressions with independent residuals.
    ### amat: the adjacency matrix of the DAG. S: cov matrix. n: sample size.
    if (missing(amat)) { # saturated model
      amat <- lower.tri(diag(ncol(S)), diag = FALSE) * 1
      dimnames(amat) <- dimnames(S)
    }
    nam <- rownames(S)
    nod <- rownames(amat)
    if (is.null(nod)) {
      stop("The adjacency matrix has no labels.")
    }
    if (!all(is.element(nod, nam))) {
      stop("The nodes of the graph do not match the names of the variables.")
    } else {
      sek <- intersect(nam, nod)
    }
    S <- S[sek, sek] # Resizes eventually S
    amat <- amat[sek, sek] # and reorders amat
    Delta <- rep(length(sek), 0)

    emat <- edgematrix(amat)
    A <- emat
    p <- ncol(S)
    ip <- 1:p
    for (i in 1:p) {
      u <- emat[i, ]
      v <- ip[u == 1 & ip != i]
      M <- swp(S, v)[i, ]
      A[i, ] <- -A[i, ] * M
      A[i, i] <- 1
      k <- sum(A[i, ])
      Delta[i] <- M[i]
    }
    names(Delta) <- sek
    B <- solve(A)
    Shat <- B %*% diag(Delta) %*% t(B)
    dimnames(Shat) <- dimnames(S)
    Khat <- solve(Shat)
    H <- S %*% Khat
    trace <- function(A) sum(diag(A))
    dev <- (trace(H) - log(det(H)) - p) * n
    df <- p * (p + 1) / 2 - sum(amat == 1) - p
    list(Shat = Shat, Ahat = A, Dhat = Delta, dev = dev, df = df)
  }





"fitDagLatent" <-
  function(amat, Syy, n, latent, norm = 1, seed, maxit = 9000, tol = 1e-6, pri = FALSE) {
    ### Fits linear recursive regressions with independent residuals and one latent variable.
    ### Syy: covariance matrix, n: sample size, amat: adjacency matrix.
    ### NOTE: both amat and Syy must have rownames.
    ### latent is the "name" of the latent in the rownames of Syy. norm = normalisation type.

    ## Local functions
    setvar1 <- function(V, z, paz, norm)
    ## paz are the parents of the latent (needed if norm=2)
    {
      ## Normalizes V
      if (norm == 1) {
        ## Rescales V forcing V[z,z] = 1
        a <- 1 / sqrt(V[z, z])
      } else if (norm == 2) {
        ## Rescales V forcing Delta[z,z] = 1
        if (sum(paz) > 0) {
          sig <- V[z, z] - V[z, paz] %*% solve(V[paz, paz]) %*% V[paz, z]
        } else {
          sig <- V[z, z]
        }
        a <- 1 / sqrt(sig)
      }
      V[z, ] <- V[z, ] * a
      V[, z] <- V[, z] * a
      V
    }

    cmqi <- function(Syy, Sigma, z) {
      ## Computes the matrix C(M | Q) by Kiiveri (1987), Psychometrika.
      ## It is a slight generalization in which Z is not the last element.
      ## z is a Boolean vector indicating the position of the latent variable in X.
      y <- !z
      Q <- solve(Sigma)
      Qzz <- Q[z, z]
      Qzy <- Q[z, y]
      B <- -solve(Qzz) %*% Qzy
      BSyy <- B %*% Syy
      E <- Sigma * 0
      E[y, y] <- Syy
      E[y, z] <- t(BSyy)
      E[z, y] <- BSyy
      E[z, z] <- BSyy %*% t(B) + solve(Qzz)
      dimnames(E) <- dimnames(Sigma)
      E
    }
    fitdag <- function(amat, S, n, constr = NULL) {
      ## Fits linear recursive regressions with independent residuals (fast version).
      ## NOTE. amat and S must have the same size and variables. constr is a matrix
      ## indicating the edges that must be constrained to 1.
      emat <- edgematrix(amat)
      A <- emat
      p <- ncol(S)
      Delta <- rep(p, 0)
      ip <- 1:p
      for (i in ip) {
        u <- emat[i, ]
        v <- ip[(u == 1) & (ip != i)] # Parents
        if (length(v) == 0) { # If pa is empty
          Delta[i] <- S[i, i]
          next
        }
        M <- lmfit(S, y = i, x = v, z = (constr[i, ] == 1))
        A[i, ] <- -A[i, ] * M
        A[i, i] <- 1
        k <- sum(A[i, ])
        Delta[i] <- M[i]
      }
      Khat <- t(A) %*% diag(1 / Delta) %*% A
      Shat <- solve(Khat)
      list(A = A, Delta = Delta, Shat = Shat, Khat = Khat)
    }
    lmfit <- function(S, y, x, z = NULL) {
      ## Regression coefficients of y given x eventually with z constrained to 1.
      ## Residual variance in position y.
      Sxy <- S[x, y, drop = FALSE] - apply(S[x, z, drop = FALSE], 1, sum)
      Sxx <- S[x, x, drop = FALSE]
      bxy <- solve(Sxx, Sxy)
      out <- rep(0, nrow(S))
      out[x] <- bxy
      out[z] <- 1
      names(out) <- rownames(S)
      xz <- c(x, z)
      b <- out[xz, drop = FALSE]
      res <- S[y, y] + t(b) %*% (S[xz, xz, drop = FALSE] %*% b - 2 * S[xz, y, drop = FALSE])
      out[y] <- res
      out
    }
    lik <- function(K, S, n, p) {
      ## Computes the deviance
      trace <- function(a) sum(diag(a))
      SK <- S %*% K
      (trace(SK) - log(det(SK)) - p) * n
    }
    ## Beginning  of the main function
    nam <- rownames(Syy) # Names of the variables (they can be more than the nodes)
    nod <- rownames(amat) # Names of the nodes of the DAG (that contains the latent)

    if (is.null(nod)) {
      stop("The adjacency matrix has no labels.")
    }
    if (!all(is.element(setdiff(nod, latent), nam))) {
      stop("The observed nodes of the graph do not match the names of the variables.")
    } else {
      sek <- intersect(nam, nod)
    }
    Syy <- Syy[sek, sek, drop = FALSE] # Resizes eventually S
    sek <- c(sek, latent)
    amat <- amat[sek, sek, drop = FALSE] # and reorders amat
    nod <- rownames(amat)
    paz <- pa(latent, amat) # Parents of the latent
    paz <- is.element(nod, paz)
    dn <- list(nod, nod)
    wherez <- is.element(nod, latent) # Index of the latent
    if (is.null(wherez)) {
      stop("Wrong name of the latent variable!")
    }
    wherey <- !wherez
    p <- ncol(Syy)
    df <- p * (p + 1) / 2 - sum(amat == 1) - p # Degrees of freedom

    if (df <= 0) {
      warning(paste("The degrees of freedom are ", df))
    }
    if (!missing(seed)) set.seed(seed) # For random starting value
    Sigma.old <- rcorr(p + 1)
    Sigma.old <- setvar1(Sigma.old, wherez, paz, norm = norm)
    dimnames(Sigma.old) <- dn
    it <- 0
    repeat{
      it <- it + 1
      if (it > maxit) {
        warning("Maximum number of iterations reached.")
        break
      }
      Q <- cmqi(Syy, Sigma.old, wherez) # E-step. See Kiiveri, 1987
      fit <- fitdag(amat, Q, n) # M-step
      Sigma.new <- fit$Shat

      if (pri) {
        dev <- lik(fit$Khat, Q, n, (p + 1)) # Monitoring progress of iterations
        cat(dev, "\n")
      } else {
        if (0 == (it %% 80)) {
          cat("\n")
        } else {
          cat(".")
        }
      }
      if (sum(abs(Sigma.new - Sigma.old)) < tol) break # Test convergence
      Sigma.old <- Sigma.new
    }
    cat("\n")
    dev <- lik(fit$Khat, Q, n, (p + 1))
    Shat <- setvar1(Sigma.new, wherez, paz, norm = norm) # Normalize Shat
    dimnames(Shat) <- dn
    Khat <- solve(Shat)
    fit <- fitDag(amat, Shat, n)
    list(Shat = Shat, Ahat = fit$Ahat, Dhat = fit$Dhat, dev = dev, df = df, it = it)
  }





"fundCycles" <-
  function(amat) {
    ### Finds a set of fundamental cycles for an UG with adj. matrix amat.
    fc <- c()
    tr <- bfsearch(amat) # Spanning tree
    if (is.null(tr)) {
      return(NULL)
    }
    if (is.null(tr$chords)) {
      return(NULL)
    }
    co <- tr$chords # edges of the cospanning tree
    for (i in 1:nrow(co)) {
      e <- co[i, ]
      g <- tr$tree # edge matrix of the spanning tree
      cy <- findPath(g, st = e[1], en = e[2])
      splitCycle <- function(v) {
        ## Splits a cycle v into a matrix of edges.
        v <- c(v, v[1])
        cbind(v[-length(v)], v[-1])
      }
      cy <- splitCycle(cy)
      fc <- c(fc, list(cy))
    }
    fc
  }





"icf" <-
  function(bi.graph, S, start = NULL, tol = 1e-06) {
    ### Iterative conditional fitting for bidirected graphs. Mathias Drton, 2003
    if (!is.matrix(S)) {
      stop("Second argument is not a matrix!")
    }
    if (dim(S)[1] != dim(S)[2]) {
      stop("Second argument is not a square matrix!")
    }
    if (min(eigen(S)[[1]]) <= 0) {
      stop("Second argument is not a positive definite matrix!")
    }

    p <- nrow(S)
    i <- 0

    ## prep spouses and non-spouses

    pa.each.node <- function(amat) {
      ## List of the parents of each node.
      ## If amat is symmetric it returns the boundaries.
      p <- nrow(amat)
      b <- vector(p, mode = "list")
      ip <- 1:p
      for (i in 1:p) {
        b[[i]] <- ip[amat[, i] == 1]
      }
      b
    }
    spo <- pa.each.node(bi.graph)
    nsp <- pa.each.node(cmpGraph(bi.graph))
    number.spouses <- unlist(lapply(spo, length))
    no.spouses <- (1:p)[number.spouses == 0]
    all.spouses <- (1:p)[number.spouses == (p - 1)]
    nontrivial.vertices <- setdiff((1:p), no.spouses)

    if (length(nontrivial.vertices) == 0) {
      if (p == 1) {
        Sigma <- S
      } else {
        Sigma <- diag(diag(S))
        dimnames(Sigma) <- dimnames(S)
      }
      return(list(Sigmahat = Sigma, iterations = 1))
    }

    if (is.null(start)) {
      Sigma <- as.matrix(diag(diag(S))) # starting value
    } else {
      temp <- diag(start)
      start[bi.graph == 0] <- 0
      diag(start) <- temp
      diag(start)[no.spouses] <- diag(S)[no.spouses]
      Sigma <- as.matrix(start)
      if (min(eigen(Sigma)$values) <= 0) {
        stop("Starting value is not feasible!")
      }
    }

    repeat{
      i <- i + 1
      Sigma.old <- Sigma
      for (v in nontrivial.vertices) {
        if (is.element(v, all.spouses)) {
          B <- S[v, -v] %*% solve(S[-v, -v])
          lambda <- S[v, v] - B %*% S[-v, v]
        } else {
          B.spo.nsp <-
            Sigma[spo[[v]], nsp[[v]]] %*% solve(Sigma[nsp[[v]], nsp[[v]]])
          YZ <- S[v, spo[[v]]] - S[v, nsp[[v]]] %*% t(B.spo.nsp)
          B.spo <-
            YZ %*%
            solve(S[spo[[v]], spo[[v]]]
            - S[spo[[v]], nsp[[v]]] %*% t(B.spo.nsp)
              - B.spo.nsp %*% S[nsp[[v]], spo[[v]]]
              + B.spo.nsp %*% S[nsp[[v]], nsp[[v]]] %*% t(B.spo.nsp))
          lambda <- S[v, v] - B.spo %*% t(YZ)
          B.nsp <- -B.spo %*% B.spo.nsp
          B <- rep(0, p)
          B[spo[[v]]] <- B.spo
          B[nsp[[v]]] <- B.nsp
          B <- B[-v]
        }
        ## here I can improve by only using B[spo[[v]]]!
        Sigma[v, -v] <- B %*% Sigma[-v, -v]
        Sigma[v, nsp[[v]]] <- 0
        Sigma[-v, v] <- t(Sigma[v, -v])
        Sigma[v, v] <- lambda + B %*% Sigma[-v, v]
      }
      if (sum(abs(Sigma.old - Sigma)) < tol) break
    }
    dimnames(Sigma) <- dimnames(S)
    return(list(Sigmahat = Sigma, iterations = i))
  }

`icfmag` <-
  function(mag, S, tol = 1e-06) {
    ## Iterative conditional fitting for ancestral and mixed graphs. Mathias Drton, 2003, 2009.
    if (!is.matrix(S)) {
      stop("Second argument is not a matrix!")
    }
    if (dim(S)[1] != dim(S)[2]) {
      stop("Second argument is not a square matrix!")
    }
    if (min(eigen(S)[[1]]) <= 0) {
      stop("Second argument is not a positive definite matrix!")
    }
    p <- nrow(S) # Dimensionality
    temp <- unmakeMG(mag)
    mag.ug <- temp$ug
    mag.dag <- temp$dg
    mag.bg <- temp$bg

    ## Catch trivial case
    if (p == 1) {
      return(list(Sigmahat = S, Omegahat = S, Bhat = NULL, Lambdahat = NULL, iterations = 1))
    }

    ## Starting value
    Omega <- diag(diag(S))
    dimnames(Omega) <- dimnames(S)
    B <- diag(p)
    dimnames(B) <- dimnames(S)

    ## IPS for UG

    UG.part <- (1:p)[0 == apply(mag.dag + mag.bg, 2, sum)]
    if (length(UG.part) > 0) {
      Lambda.inv <-
        fitConGraph(mag.ug[UG.part, UG.part, drop = FALSE],
          S[UG.part, UG.part, drop = FALSE], p + 1,
          tol = tol
        )$Shat
      Omega[UG.part, UG.part] <- Lambda.inv
    }

    ## Prepare list of spouses, parents, etc.
    pa.each.node <- function(amat) {
      ## List of the parents of each node.
      ## If the adjacency matrix is symmetric it gives the boundary.
      p <- nrow(amat)
      b <- vector(p, mode = "list")
      ip <- 1:p
      for (i in 1:p) {
        b[[i]] <- ip[amat[, i] == 1]
      }
      b
    }
    spo <- pa.each.node(mag.bg)
    nsp <- pa.each.node(cmpGraph(mag.bg))
    pars <- pa.each.node(mag.dag)

    i <- 0
    repeat{
      i <- i + 1
      Omega.old <- Omega
      B.old <- B
      for (v in setdiff(1:p, UG.part)) {
        parv <- pars[[v]]
        spov <- spo[[v]]
        if (length(spov) == 0) {
          if (length(parv) != 0) {
            if (i == 1) { # do it only once
              ## attention: B = - beta
              B[v, parv] <- -S[v, parv] %*% solve(S[parv, parv])
              Omega[v, v] <- S[v, v] + B[v, parv] %*% S[parv, v]
            }
          }
        } else {
          if (length(parv) != 0) {
            O.inv <- matrix(0, p, p)
            O.inv[-v, -v] <- solve(Omega[-v, -v])
            Z <- O.inv[spov, -v] %*% B[-v, ]
            lpa <- length(parv)
            lspo <- length(spov)
            XX <- matrix(0, lpa + lspo, lpa + lspo)
            XX[1:lpa, 1:lpa] <- S[parv, parv]
            XX[1:lpa, (lpa + 1):(lpa + lspo)] <- S[parv, ] %*% t(Z)
            XX[(lpa + 1):(lpa + lspo), 1:lpa] <- t(XX[1:lpa, (lpa + 1):(lpa + lspo)])
            XX[(lpa + 1):(lpa + lspo), (lpa + 1):(lpa + lspo)] <- Z %*% S %*% t(Z)
            YX <- c(S[v, parv], S[v, ] %*% t(Z))
            temp <- YX %*% solve(XX)
            B[v, parv] <- -temp[1:lpa]
            Omega[v, spov] <- temp[(lpa + 1):(lpa + lspo)]
            Omega[spov, v] <- Omega[v, spov]

            temp.var <- S[v, v] - temp %*% YX
            Omega[v, v] <- temp.var +
              Omega[v, spov] %*% O.inv[spov, spov] %*% Omega[spov, v]
          } else {
            O.inv <- matrix(0, p, p)
            O.inv[-v, -v] <- solve(Omega[-v, -v])
            Z <- O.inv[spov, -v] %*% B[-v, ]
            XX <- Z %*% S %*% t(Z)
            YX <- c(S[v, ] %*% t(Z))
            Omega[v, spov] <- YX %*% solve(XX)
            Omega[spov, v] <- Omega[v, spov]

            temp.var <- S[v, v] - Omega[v, spov] %*% YX
            Omega[v, v] <- temp.var +
              Omega[v, spov] %*% O.inv[spov, spov] %*%
              Omega[spov, v]
          }
        }
      }
      if (sum(abs(Omega.old - Omega)) + sum(abs(B.old - B)) < tol) break
    }
    Sigma <- solve(B) %*% Omega %*% solve(t(B))
    ##  Corrections by Thomas Richardson of the following:
    ##  Lambda <- Omega
    ##  Lambda[-UG.part,-UG.part] <- 0
    Lambda <- matrix(0, p, p)
    if (length(UG.part) > 0) {
      Lambda[-UG.part, -UG.part] <- Omega[-UG.part, -UG.part]
    }

    Omega[UG.part, UG.part] <- 0
    return(list(
      Sigmahat = Sigma, Bhat = B, Omegahat = Omega, Lambdahat = Lambda,
      iterations = i
    ))
  }





`In` <-
  function(A) {
    ### Indicator matrix of structural zeros.
    abs(sign(A))
  }






`isAcyclic` <-
  function(amat, method = 2) {
    ### Tests if the graph is acyclic.
    if (method == 1) {
      G <- graph.adjacency(amat)
      return(max(clusters(G, mode = "strong")$csize) == 1)
    } else if (method == 2) {
      B <- transClos(amat)
      l <- B[lower.tri(B)]
      u <- t(B)[lower.tri(t(B))]
      com <- (l & u)
      return(all(!com))
    } else {
      stop("Wrong method.")
    }
  }





"isGident" <-
  function(amat) {
    ### Is the UG with adjacency matrix amat G-identifiable?
    is.odd <- function(x) (x %% 2) == 1
    cmpGraph <- function(amat) {
      ## Adjacency matrix of the complementary graph.
      g <- 0 + (!amat)
      diag(g) <- 0
      g
    }
    cgr <- cmpGraph(amat)
    cc <- conComp(cgr)
    l <- unique(cc)
    k <- length(l)
    g <- rep(k, 0)
    for (i in 1:k) {
      subg <- cgr[cc == i, cc == i, drop = FALSE]
      m <- cycleMatrix(subg)
      if (is.null(m)) {
        rt <- 0
      } else {
        rt <- apply(m, 1, sum)
      }
      g[i] <- any(is.odd(rt))
    }
    all(g)
  }






"parcor" <-
  function(S) {
    ### Finds the partial correlation matrix of the variables given the rest.
    ### S is the covariance matrix.
    p <- ncol(S)
    K <- solve(S)
    a <- 1 / sqrt(diag(K))
    K <- K * outer(a, a)
    out <- 2 * diag(p) - K
    dimnames(out) <- dimnames(S)
    out
  }





"pcor" <-
  function(u, S) {
    ### Partial correlation between u[1:2], given th rest of u. S: cov matrix.
    k <- solve(S[u, u])
    -k[1, 2] / sqrt(k[1, 1] * k[2, 2])
  }





"pcor.test" <-
  function(r, q, n) {
    df <- n - 2 - q
    tval <- r * sqrt(df) / sqrt(1 - r * r)
    pv <- 2 * pt(-abs(tval), df)
    list(tval = tval, df = df, pvalue = pv)
  }





"rcorr" <-
  function(d) {
    # Generates a random correlation matrix of dimension d
    # with the method of Marsaglia and Olkin (1984).
    h <- rsphere(d, d)
    h %*% t(h)
  }





"rnormDag" <-
  function(n, A, Delta) {
    ### Generates n observations from a multivariate normal with mean 0
    ### and a covariance matrix A^-1 Delta (A^-1)'.
    p <- length(Delta)
    E <- matrix(0, n, p)
    for (j in 1:p) {
      E[, j] <- rnorm(n, 0, sqrt(Delta[j]))
    }
    B <- solve(A)
    Y <- E %*% t(B)
    colnames(Y) <- colnames(A)
    Y
  }





"rsphere" <-
  function(n, d) {
    ## Generates n random vectors uniformly dist. on the
    ## surface of a sphere, in d dimensions.
    X <- matrix(rnorm(n * d), n, d)
    d <- apply(X, 1, function(x) sqrt(sum(x * x)))
    sweep(X, 1, d, "/")
  }





"shipley.test" <-
  function(amat, S, n) {
    ### Overall d-separation test. See Shipley (2000).
    ### amat: adjacency matrix; S: covariance matrix;  n: observations.
    pval <- function(r, q, n) {
      ## See pcor
      df <- n - 2 - q
      tval <- r * sqrt(df) / sqrt(1 - r * r)
      2 * pt(-abs(tval), df)
    }
    l <- basiSet(amat)
    k <- length(l)
    p <- rep(0, k)
    for (i in 1:k) {
      r <- pcor(l[[i]], S)
      q <- length(l[[i]]) - 2
      p[i] <- pval(r, q, n)
    }
    ctest <- -2 * sum(log(p))
    df <- 2 * k
    pv <- 1 - pchisq(ctest, df)
    list(ctest = ctest, df = df, pvalue = pv)
  }





"swp" <-
  function(V, b) {
    ### SWP operator. V is the covariance matrix, b  is a  subset of indices.
    p <- ncol(V)
    u <- is.na(match(1:p, b))
    a <- (1:p)[u]
    out <- 0 * V
    dimnames(out) <- dimnames(V)
    if (length(a) == 0) {
      return(-solve(V))
    } else if (length(a) == p) {
      return(V)
    } else {
      Saa <- V[a, a, drop = FALSE]
      Sab <- V[a, b, drop = FALSE]
      Sbb <- V[b, b, drop = FALSE]
      B <- Sab %*% solve(Sbb)
      out[a, a] <- Saa - B %*% t(Sab)
      out[a, b] <- B
      out[b, a] <- t(B)
      out[b, b] <- -solve(Sbb)
      return(out)
    }
    ## list(swept = out, coef = out[a, b], rss = out[a, a, drop = F])
  }

"topOrder" <-
  function(amat) {
    ### Return the nodes in topological order (parents before children).
    ### Translated from: Kevin Murphy's BNT.
    if (!isAcyclic(amat)) stop("The graph is not acyclic!")
    n <- nrow(amat)
    nod <- 1:n
    indeg <- rep(0, n)
    up <- !amat[lower.tri(amat)]
    if (all(up)) {
      return(nod)
    }
    zero.indeg <- c() #  a stack of nodes with no parents
    for (i in nod) {
      indeg[i] <- sum(amat[, i])
      if (indeg[i] == 0) {
        zero.indeg <- c(i, zero.indeg)
      }
    }
    s <- 1
    ord <- rep(0, n)
    while (length(zero.indeg) > 0) {
      v <- zero.indeg[1] #  pop v
      zero.indeg <- zero.indeg[-1]
      ord[s] <- v
      s <- s + 1
      cs <- nod[amat[v, ] == 1]
      if (length(cs) == 0) next
      for (j in 1:length(cs)) {
        k <- cs[j]
        indeg[k] <- indeg[k] - 1
        if (indeg[k] == 0) {
          zero.indeg <- c(k, zero.indeg)
        } # push k
      }
    }
    ord
  }





"topSort" <-
  function(amat) {
    ### Topological sort of the DAG with adjacency matrix amat.
    ord <- topOrder(amat)
    amat[ord, ord]
  }





`transClos` <-
  function(amat) {
    ### Transitive closure of the relation with adjacency matrix amat.
    if (nrow(amat) == 1) {
      return(amat)
    }
    A <- amat
    diag(A) <- 1
    repeat {
      B <- sign(A %*% A)
      if (all(B == A)) {
        break
      } else {
        A <- B
      }
    }
    diag(A) <- 0
    A
  }





"triDec" <-
  function(Sigma) {
    ### Triangular decomposition of covariance matrix Sigma.
    R <- chol(solve(Sigma))
    dimnames(R) <- dimnames(Sigma)
    D <- diag(R)
    A <- diag(1 / D) %*% R
    dimnames(A) <- dimnames(Sigma)
    B <- solve(A)
    list(A = A, B = B, Delta = 1 / (D^2))
  }





"UG" <-
  function(f) {
    ### Defines an UG from a model formula. Returns the adj. matrix.
    tt <- terms(f)
    if (attr(tt, "response") == 1) {
      stop("You should not specify a response!")
    }
    nod <- dimnames(attr(tt, "factors"))[[1]]

    N <- unique(nod) # set of nodes
    dN <- length(N) # number of nodes
    amat <- matrix(0, dN, dN)
    o <- attr(tt, "order") <= 2
    v <- attr(tt, "factors")[, o, drop = FALSE]
    m <- match(dimnames(v)[[1]], N)
    for (i in 1:sum(o)) {
      ij <- m[v[, i] == 1]
      amat[ij[1], ij[2]] <- 1
      amat[ij[2], ij[1]] <- 1
    }
    dimnames(amat) <- list(N, N)
    amat
  }





`makeMG` <- function(dg = NULL, ug = NULL, bg = NULL) {
  dg.nodes <- rownames(dg)
  ug.nodes <- rownames(ug)
  bg.nodes <- rownames(bg)
  ver <- unique(c(dg.nodes, ug.nodes, bg.nodes))
  d <- length(ver)
  amat <- matrix(0, d, d)
  dimnames(amat) <- list(ver, ver)
  amat.dg <- amat
  amat.ug <- amat
  amat.bg <- amat
  if (!is.null(dg)) {
    amat.dg[dg.nodes, dg.nodes] <- dg
  }
  if (!is.null(ug)) {
    amat.ug[ug.nodes, ug.nodes] <- ug * 10
  }
  if (!is.null(bg)) {
    amat.bg[bg.nodes, bg.nodes] <- bg * 100
  }
  amat.dg + amat.ug + amat.bg
}




`unmakeMG` <- function(amat) {
  ### Returns a list with the three components of a loopless MG.
  d <- nrow(amat)
  ug <- dg <- bg <- amat
  M <- expand.grid(dg = 0:1, ug = 0:1, bg = 0:1)
  i <- strtoi(as.character(amat), 2)
  GG <- M[i + 1, ]
  ug[, ] <- GG[, 2]
  dg[, ] <- GG[, 1]
  bg[, ] <- GG[, 3]
  if (any(ug != t(ug))) stop("Undirected edges are wrongly coded.")
  if (any(bg != t(bg))) stop("Undirected edges are wrongly coded.")
  return(list(dg = dg, ug = ug, bg = bg))
}




`DG` <- function(...) {
  f <- list(...)
  nb <- length(f)
  nod <- c()
  for (k in 1:nb) {
    tt <- terms(f[[k]], specials = "I")
    vars <- dimnames(attr(tt, "factors"))[[1]]
    skip <- attr(tt, "specials")$I
    if (!is.null(skip)) {
      vars <- vars[-skip]
    }
    nod <- c(nod, vars)
  }
  N <- unique(nod)
  dN <- length(N)
  amat <- matrix(0, dN, dN)
  for (k in 1:nb) {
    tt <- terms(f[[k]], specials = "I")
    vars <- dimnames(attr(tt, "factors"))[[1]]
    if (attr(tt, "response") == 1) {
      j <- match(vars[1], N)
      i <- match(vars[-1], N)
      amat[i, j] <- 1
    } else if (attr(tt, "response") == 0) {
      stop("Some equations have no response")
    }
  }
  dimnames(amat) <- list(N, N)
  amat
}




`isAG` <- function(amat) {
  ### checks if a graph is an ancestral graph
  comp <- unmakeMG(amat)
  ug <- comp$ug
  dag <- comp$dg
  bg <- comp$bg
  out <- TRUE

  if (any(amat > 100)) {
    warning("There are double edges.")
    out <- FALSE
  }
  anteriorGraph <- function(amat) {
    ## Adjacency matrix of the anterior graph from an AG.
    A <- 0 + ((amat == 1) | (amat == 10)) # Select the directed and undirected edges
    transClos(A)
  }
  if (any(apply(dag, 2, sum) & apply(ug, 2, sum))) {
    warning("Undirected edges meeting a directed edge.")
    out <- FALSE
  }
  if (any(apply(bg, 2, sum) & apply(ug, 2, sum))) {
    warning("Undirected edges meeting a bidirected edge.")
    out <- FALSE
  }
  H <- anteriorGraph(amat)

  if (any((H == 1) & (amat == 100))) {
    warning("Spouses cannot be ancestors.")
    out <- FALSE
  }
  out
}





`isADMG` <- function(amat) {
  ### check is if a graph is an ADMG
  comp <- unmakeMG(amat)
  ug <- comp$ug
  dag <- comp$dg
  bg <- comp$bg
  out <- TRUE
  if (any(amat > 100)) {
    warning("There are double edges.")
    out <- FALSE
  }
  if (!isAcyclic(dag)) {
    warning("Not acyclic.")
    out <- FALSE
  }
  out
}





`plotGraph` <- function(a, dashed = FALSE, tcltk = TRUE, layout = layout.auto, directed = FALSE, noframe = FALSE, nodesize = 15, vld = 0, vc = "gray", vfc = "black", colbid = "FireBrick3", coloth = "black", cex = 1.5, ...) {
  if (class(a)[1] == "igraph" || class(a)[1] == "graphNEL" || class(a)[1] ==
    "character") {
    a <- grMAT(a)
  }
  if (is(a, "matrix")) {
    if (nrow(a) == ncol(a)) {
      if (length(rownames(a)) != ncol(a)) {
        rownames(a) <- 1:ncol(a)
        colnames(a) <- 1:ncol(a)
      }
      if (!directed) {
        if (all(a == t(a)) & all(a[a != 0] == 1)) {
          a <- a * 10
        }
      }
      l1 <- c()
      l2 <- c()
      for (i in 1:nrow(a)) {
        for (j in i:nrow(a)) {
          if (a[i, j] == 1) {
            l1 <- c(l1, i, j)
            l2 <- c(l2, 2)
          }
          if (a[j, i] %% 10 == 1) {
            l1 <- c(l1, j, i)
            l2 <- c(l2, 2)
          }
          if (a[i, j] == 10) {
            l1 <- c(l1, i, j)
            l2 <- c(l2, 0)
          }
          if (a[i, j] == 11) {
            l1 <- c(l1, i, j, i, j)
            l2 <- c(l2, 2, 0)
          }
          if (a[i, j] == 100) {
            l1 <- c(l1, i, j)
            l2 <- c(l2, 3)
          }
          if (a[i, j] == 101) {
            l1 <- c(l1, i, j, i, j)
            l2 <- c(l2, 2, 3)
          }
          if (a[i, j] == 110) {
            l1 <- c(l1, i, j, i, j)
            l2 <- c(l2, 0, 3)
          }
          if (a[i, j] == 111) {
            l1 <- c(l1, i, j, i, j, i, j)
            l2 <- c(l2, 2, 0, 3)
          }
        }
      }
    } else {
      stop("'object' is not in a valid adjacency matrix form")
    }
    if (length(l1) > 0) {
      ## l1 <- l1 - 1   # igraph0
      agr <- graph(l1, n = nrow(a), directed = TRUE)
    }
    if (length(l1) == 0) {
      agr <- graph.empty(n = nrow(a), directed = TRUE)
      return(tkplot(agr, vertex.label = rownames(a)))
    }
    ed0 <- get.edgelist(agr)
    ne <- nrow(ed0)
    ed <- apply(apply(ed0, 1, sort), 2, paste, collapse = "-")
    tb <- table(ed)
    curve <- rep(0, ne)
    if (any(tb > 1)) {
      tb <- tb[tb > 1]
      for (i in 1:length(tb)) {
        reped <- names(tb[i]) == ed
        U <- ed0[reped, ]
        if (sum(reped) == 2) {
          ed0[reped]
          if (all(is.element(c(0, 3), l2[reped]))) {
            curve[reped] <- c(0.9, -0.9)
          }
          if (all(U[1, ] == U[2, ])) {
            curve[reped] <- c(0.6, -0.6)
          } else {
            curve[reped] <- c(0.6, 0.6)
          }
        }
        if (sum(reped) == 3) {
          curve[(l2 == 3) & reped] <- 0.9
          curve[(l2 == 0) & reped] <- -0.9
        }
        if (sum(reped) == 4) {
          curve[(l2 == 3) & reped] <- 0.3
          curve[(l2 == 0) & reped] <- -0.3
          curve[(l2 == 1) & reped] <- 0.9
          curve[(l2 == 2) & reped] <- 0.9
        }
      }
    }
    col <- rep(coloth, ne)
    col[l2 == 3] <- colbid
    if (dashed) {
      ety <- rep(1, ne)
      ety[l2 == 3] <- 2
      l2[l2 == 3] <- 0
    } else {
      ety <- rep(1, ne)
    }
    if (noframe) {
      vfc <- "white"
      vc <- "white"
    }
    if (tcltk == TRUE) {
      id <- tkplot(agr,
        layout = layout, edge.curved = curve,
        vertex.label = rownames(a), edge.arrow.mode = l2,
        edge.color = col, edge.lty = ety,
        vertex.label.family = "sans",
        edge.width = 1.5, vertex.size = nodesize,
        vertex.frame.color = vfc, vertex.color = vc,
        vertex.label.cex = cex, edge.arrow.width = 1,
        edge.arrow.size = 1.2, vertex.label.dist = vld, ...
      )
    } else {
      id <- plot(agr,
        layout = layout, edge.curved = curve,
        vertex.label = rownames(a), edge.arrow.mode = l2,
        edge.color = col, edge.lty = ety,
        vertex.label.family = "sans",
        edge.width = 2, vertex.size = nodesize * 1.5,
        vertex.frame.color = vfc, vertex.color = vc,
        vertex.label.cex = cex * 0.8, edge.arrow.width = 2,
        edge.arrow.size = .5, vertex.label.dist = vld, ...
      )
    }
    V(agr)$name <- rownames(a)
    agr <- set.edge.attribute(agr, "edge.arrow.mode", index = E(agr), l2)
    return(invisible(list(tkp.id = id, igraph = agr)))
  } else {
    stop("'object' is not in a valid format")
  }
}

## Fit multivariate logistic model with individual covariates
#############################################################







`binve` <- function(eta, C, M, G, maxit = 500, print = FALSE, tol = 1e-10) {
  # Inverts a marginal loglinear parameterization.
  # eta  has dimension t-1,
  # G is the model matrix of the loglinear parameterization with no intercept.
  # C and M are the matrices of the link.
  # From a Matlab function by A. Forcina, University of Perugia, Italy.


  ## starting values

  k <- nrow(C)
  pmin <- 1e-100
  kG <- ncol(G)
  err <- 0
  th0 <- matrix(1, k, 1) / 100

  ## prepare to iterate
  it <- 0
  mit <- 500
  p <- exp(G %*% th0)
  p <- p / sum(p)
  t <- M %*% p
  d <- eta - C %*% log(t)
  div0 <- crossprod(d)
  hh <- 0
  s <- c(.1, .6, 1.2)
  div <- div0 + 1
  while ((it < maxit) & (div > tol)) {
    R0 <- C %*% diagv(1 / t, M) %*% diagv(p, G)
    rco <- rcond(R0) > tol
    ub <- 0
    while (rco == FALSE) {
      cat("Rank: ", qr(R0)$rank, "\n")
      R0 <- R0 + diag(k)
      rco <- rcond(R0) > tol
    }
    de <- solve(R0) %*% d
    dem <- max(abs(de))
    de <- (dem <= 4) * de + (dem > 4) * 4 * de / dem
    th <- th0 + de
    p <- exp(G %*% th)
    p <- p / sum(p)
    p <- p + pmin * (p < pmin)
    p <- p / sum(p)
    t <- M %*% p
    d <- eta - C %*% log(t)
    div <- crossprod(d)
    rid <- (.01 + div0) / (.01 + div)
    iw <- 0
    while ((rid < 0.96) & (iw < 10)) {
      th <- th0 + de %*% (rid^(iw + 1))
      p <- exp(G %*% th)
      p <- p / sum(p)
      p <- p + pmin * (p < pmin)
      p <- p / sum(p)
      t <- M %*% p
      d <- (eta - C %*% log(M %*% p))
      div <- crossprod(d)
      rid <- (.01 + div) / (.01 + div0)
      iw <- iw + 1
      it <- it + 1
    }
    if (rid < 0.96) {
      it <- mit
    } else {
      it <- it + 1
      th0 <- th
    }
  }
  if (div > tol) {
    warning("div > tolerance.", call. = FALSE)
  }
  if (any(is.nan(p))) {
    warning("Some NaN in the vector of probabilities.", call. = FALSE)
  }
  if (it > maxit) {
    warning("Maximum number of iteration reached.", call. = FALSE)
  }
  if (print) {
    cat("Iterations: ", it, ", Div = ", div, ".\n")
  }
  as.vector(p)
}



# The following function has been generalized and called mlogit.param


`mat.mlogit` <- function(d, P = powerset(1:d)) {
  ## Find matrices C and M of binary mlogit parameterization  for a table 2^d.
  ## The output will be in the ordering of P.
  ## Here for 3 variables is: 1 2 3 12 13 23 123.

  `margmat` <- function(bi, mar) {
    ### Defines the marginalization matrix
    if (mar == FALSE) {
      matrix(1, 1, bi)
    } else {
      diag(bi)
    }
  }

  `contrmat` <- function(bi, i) {
    ### Contrast matrix
    if (i == FALSE) {
      1
    } else {
      cbind(-1, diag(bi - 1))
    }
  }
  V <- 1:d

  C <- matrix(0, 0, 0)
  L <- c()

  for (mar in P) {
    K <- 1
    H <- 1
    for (i in V) {
      w <- is.element(i, mar)
      K <- contrmat(2, w) %x% K
      H <- margmat(2, w) %x% H
    }
    C <- blkdiag(C, K)
    L <- rbind(L, H)
  }
  list(C = C, L = L)
}





`powerset` <- function(set, sort = TRUE, nonempty = TRUE) {
  ## Power set P(set). If nonempty = TRUE, the empty set is excluded.
  d <- length(set)
  if (d == 0) {
    if (nonempty) {
      stop("The set is empty.")
    }
    return(list(c()))
  }

  out <- expand.grid(rep(list(c(FALSE, TRUE)), d))
  out <- as.matrix(out)
  out <- apply(out, 1, function(x) set[x])
  if (nonempty) {
    out <- out[-1]
  }
  if (sort) {
    i <- order(unlist(lapply(out, length)))
  } else {
    i <- 1:length(out)
  }
  names(out) <- NULL
  out[i]
}





`null` <- function(M) {
  tmp <- qr(M)
  set <- if (tmp$rank == 0L) {
    1L:ncol(M)
  } else {
    -(1L:tmp$rank)
  }
  qr.Q(tmp, complete = TRUE)[, set, drop = FALSE]
}






`diagv` <- function(v, M) {
  # Computes N = diag(v) %*% M avoiding the diag operator.
  as.vector(v) * M
}





`blodiag` <- function(x, blo) {
  # Split a vector x into a block diagonal matrix bith components blo.
  # Used by fitmlogit.
  k <- length(blo)
  B <- matrix(0, k, sum(blo))
  u <- cumsum(c(1, blo))
  for (i in 1:k) {
    sub <- u[i]:(u[i + 1] - 1)
    B[i, sub] <- x[sub]
  }
  B
}


##### The main function fitmlogit  ##########





`fitmlogit` <- function(..., C = c(), D = c(), data, mit = 100, ep = 1e-80, acc = 1e-4) {
  # Fits a logistic regression model to multivariate binary responseses.

  # Preliminaries

  loglin2 <- function(d) {
    # Finds the matrix G for a set o d binary variables in inv lex order.

    G <- 1
    K <- matrix(c(1, 1, 0, 1), 2, 2)

    for (i in 1:d) {
      G <- G %x% K
    }
    G[, -1]
  }


  mods <- list(...)
  # mods should have 2^q - 1 components
  nm <- length(mods)

  be <- c()
  # Starting values
  resp <- c()
  Xbig <- c()
  blo <- c()
  for (k in 1:nm) {
    mf <- model.frame(mods[[k]], data = data)
    res <- model.response(mf)
    Xsmall <- model.matrix(mods[[k]], data = data)
    Xbig <- cbind(Xbig, Xsmall)
    blo <- c(blo, ncol(Xsmall))
    nr <- 1
    if (is.vector(res)) {
      b <- glm(mods[[k]], family = binomial, data = data)
      be <- c(be, coef(b))
    } else {
      be2 <- rep(0.1, ncol(Xsmall))
      be <- c(be, be2)
      nc <- ncol(res)

      if (nc > nr) {
        nr <- nc
        Y <- res
      }
    }
  }

  q <- nr # number of responses

  b <- rep(2, q) # Assuming all binary variables


  # Transforms the binary observation into a cell number
  y <- 1 + (Y %*% 2^(0:(q - 1)))

  # Finds the matrices C, M and G

  mml <- mat.mlogit(q)
  Co <- mml$C
  Ma <- mml$L
  Co <- as.matrix(Co)
  G <- loglin2(q)


  b0 <- be
  n <- length(y) # le righe di y sono le unita'
  t <- max(y) #  Questo e' semplicemente 2^q


  k <- length(be) # number of parameters
  rc <- nrow(C)
  cc <- ncol(C)
  rd <- nrow(D)
  cd <- ncol(D)

  # if (k != cc){
  #     warning('check col C')
  # }
  # if( k != cd){
  #     warning('check col D')
  # }

  if (!is.null(C)) { # se C non ha zero righe trova il null space di C
    U <- null(C)
  }

  seta <- nrow(Co) # e' la dimensione di eta
  mg <- t(G) %*% matrix(1 / t, t, t) # NB troppi t!

  H <- solve(crossprod(G) - mg %*% G) %*% (t(G) - mg)

  # initialize



  P <- matrix(0, t, n)
  cat("Initial probabilities\n")

  for (iu in 1:n) { #  initialize P iu = index of a unit
    #   X = .bdiag(lapply(mods, function(x) model.matrix(x, data = data[iu,])))    ### Change this
    #   X = as.matrix(X)
    X <- blodiag(Xbig[iu, ], blo)
    eta <- X %*% be
    eta <- as.matrix(eta)
    p <- binve(eta, Co, Ma, G)
    p <- pmax(p, ep)
    p <- p / sum(p)
    P[, iu] <- p
  }

  # Iterate

  it <- 0
  test <- 0
  diss <- 1
  LL0 <- 0
  dis <- 1
  dm <- 1
  while (it < mit && (dis + diss) > acc) {
    LL <- 0
    s <- matrix(0, k, 1)
    S <- matrix(0, k, k)
    dis <- 0
    for (iu in 1:n) {
      # X = .bdiag(lapply(mods, function(x) model.matrix(x, data = data[iu,])))
      # X = as.matrix(X)
      X <- blodiag(Xbig[iu, ], blo)
      p <- P[, iu]

      if (it > 0) {
        Op <- diag(p) - p %*% t(p)

        R <- Co %*% diagv(1 / (Ma %*% p), Ma) %*% Op %*% G # This is the inverse Jacobian

        while (rcond(R) < 1e-12) {
          R <- R + diag(seta)
        }

        R <- solve(R)
        delta <- X %*% be - Co %*% log(Ma %*% p)
        th <- H %*% log(p) + R %*% delta
        dm <- max(th) - min(th)
        p <- exp(G %*% th)
        p <- p / sum(p)
        p <- pmax(p, ep)
        p <- p / sum(p)
        P[, iu] <- p
      }

      LL <- LL + log(p[y[iu]])

      Op <- diag(as.vector(p)) - p %*% t(p)

      R <- Co %*% diagv(1 / (Ma %*% p), Ma) %*% Op %*% G # Check

      while (rcond(R) < 1e-12) {
        R <- R + diag(seta)
      }
      R <- solve(R)
      eta <- Co %*% log(Ma %*% p)
      delta <- X %*% be - eta
      dis <- dis + sum(abs(delta))
      A <- G %*% R %*% X
      B <- t(R) %*% t(G) %*% Op %*% A
      S <- S + t(B) %*% X

      #    attivare una delle due

      s <- s + (t(A[y[iu], , drop = FALSE]) - t(A) %*% p) + t(B) %*% eta # versione 1
      #     s = s +( t(A[y[iu],]) - t(A)%*% p)             # versione 2
    }

    while (rcond(S) < 1e-10) {
      S <- S + mean(abs(diag(S))) * diag(k)
    }
    #  attivare 1 delle due

    b0 <- be
    v <- solve(S, s) #  versione 1
    #    b0=be; v = b0 + solve(S) %*% s # versione 2

    if (is.null(rc) & is.null(rd)) {
      de <- v - b0
    } else if (is.null(rc)) { # only inequalities
      Si <- solve(S)
      Li <- t(chol(Si))
      Di <- D %*% Li
      de <- NULL
      # de = v - b0 + Li %*% ldp(Di,-D %*% v) # Needs ldp
    } else if (is.null(rd)) { # only equalities
      Ai <- solve(t(U) %*% S %*% U)
      de <- U %*% Ai %*% t(U) %*% S %*% v - b0
    } else { # both  equalities and inequalities
      Ai <- solve(t(U) %*% S %*% U)
      Li <- t(chol(Ai))
      Dz <- D %*% U
      ta <- Ai %*% t(U) %*% S %*% v
      # de = U %*% (ta + Li %*% ldp(Dz %*% Li, -Dz %*% ta)) - b0 # Needs ldp
      de <- NULL
    }

    dm0 <- dm
    dm <- max(de) - min(de) # shorten step

    dd <- (dm > 1.5)
    de <- de / (1 + dd * (dm^(.85)))
    be <- b0 + de
    diss <- sum(abs(de))
    LL0 <- LL
    it <- it + 1
    cat(c(it, LL / 100, dis / n, diss), "\n")
    #   cat(t(be), "\n")
  }

  list(LL = LL, beta = be, S = solve(S), P = P)
}





`marg.param` <- function(lev, type)
                         # Creates matrices C and M for the marginal parametrization
                         # of the probability vector for a vector of categorical variables.
                         # INPUT:
                         # lev:  vector containing the number of levels of each variable
                         # type: vector with elements 'l', 'g', 'c', 'r' indicating the type of logit
                         #       'g' for global,
                         #       'c' for continuation,
                         #       'r' for reverse continuation,
                         #       'l' for local.
                         # OUTPUT:
                         # C:    matrix of constrats (the first sum(lev)-length(r) elements are
                         #       referred to univariate logits)
                         # M:    marginalization matrix with elements 0 and 1
                         # G:    corresponding design matrix for the corresponding log-linear model
                         # Translated from a Matlab function by Bartolucci and Forcina.
                         # NOTE: assumes that the vector of probabilities is in inv lex order.
#       The interactions are returned in order of dimension, like e.g.,  1 2 3 12 13 23 123.
{
  # preliminaries

  `powset` <- function(d)
  # Power set P(d).
  {
    P <- expand.grid(rep(list(1:2), d))
    P[order(apply(P, 1, sum)), ] - 1
  }

  r <- length(lev)
  # create sets of parameters
  S <- powset(r)
  S <- S[-1, ] # drop the empty set
  C <- c()
  M <- c()
  G <- c()
  for (i in 1:nrow(S)) {
    si <- S[i, ]
    Ci <- 1 # to update matrix C
    for (h in 1:r) {
      if (si[h] == 1) {
        I <- diag(lev[h] - 1)
        Ci <- cbind(-I, I) %x% Ci
      }
    }
    C <- blkdiag(C, Ci)
    Mi <- 1 # to update matrix M
    for (h in 1:r) {
      lh <- lev[h] - 1
      if (si[h] == 1) {
        I <- diag(lh)
        T <- 0 + lower.tri(matrix(1, lh, lh), diag = TRUE)
        ze <- matrix(0, lh, 1)
        Mi <- switch(type[h],
          l = rbind(cbind(I, ze), cbind(ze, I)) %x% Mi,
          g = rbind(cbind(T, ze), cbind(ze, t(T))) %x% Mi,
          c = rbind(cbind(I, ze), cbind(ze, t(T))) %x% Mi,
          r = rbind(cbind(T, ze), cbind(ze, I)) %x% Mi
        )
      } else {
        Mi <- matrix(1, 1, lev[h]) %x% Mi
      }
    }
    M <- rbind(M, Mi)

    Gi <- 1 # for the design matrix
    for (h in 1:r) {
      lh <- lev[h]
      if (si[h] == 1) {
        T <- 0 + lower.tri(matrix(1, lh, lh), diag = TRUE)
        T <- T[, -1]
        Gi <- T %x% Gi
      } else {
        Gi <- matrix(1, lh, 1) %x% Gi
      }
    }
    G <- cbind(G, Gi)
  }
  list(C = C, M = M, G = G)
}





`blkdiag` <- function(...) {
  ### Block diagonal concatenation of input arguments.
  a <- list(...)
  Y <- matrix(0, 0, 0)
  for (M in a) {
    if (is.null(M)) {
      M <- matrix(0, 0, 0)
    }
    M <- as.matrix(M)
    dY <- dim(Y)
    dM <- dim(M)
    zeros1 <- matrix(0, dY[1], dM[2])
    zeros2 <- matrix(0, dM[1], dY[2])
    Y <- rbind(cbind(Y, zeros1), cbind(zeros2, M))
  }
  Y
}

# source("~/Documents/R/graphical_models/fitmlogit.R")
# fitmlogit(A ~X, B ~ Z, cbind(A, B) ~ 1, data = datisim)
# source("~/Documents/R/graphical_models/ilaria/sim-blogit.R")


#### Functions by Kayvan Sadeghi 2011-2012
## May 2012 Changed the return values of some functions to TRUE FALSE



`rem` <- function(a, r) { # this is setdiff (a, r)
  k <- 0
  b <- a
  for (i in a) {
    k <- k + 1
    for (j in r) {
      if (i == j) {
        b <- b[-k]
        k <- k - 1
        break
      }
    }
  }
  return(b)
}

# SPl<-function(a,alpha){
# 	a<-sort(a)
# 	alpha<-sort(alpha)
# 	r<-c()
# 	if (length(alpha)>0){
# 		for(i in 1:length(a)){
# 			for(j in 1:length(alpha)){
# 				if(a[i]==alpha[j]){
# 					r<-c(r,i)
# 					break}}}}
# 	return(r)
# }
###############################################################################
# Finds indices of b in sorted a

`SPl` <- function(a, b) (seq_along(a))[is.element(sort(a), b)]
##############################################################################
`RR` <- function(a) { ## This is unique(a)
  a <- sort(a)
  r <- a[1]
  i <- 1
  while (i < length(a)) {
    if (a[i] == a[i + 1]) {
      i <- i + 1
    } else {
      r <- c(r, a[i + 1])
      i <- i + 1
    }
  }
  return(r)
}

`likGau` <- function(K, S, n, k) {
  # deviance of the Gaussian model.
  SK <- S %*% K
  tr <- function(A) sum(diag(A))
  (tr(SK) - log(det(SK)) - k) * n
}

`grMAT` <- function(agr) {
  if (class(agr)[1] == "graphNEL") {
    agr <- igraph.from.graphNEL(agr)
  }
  if (class(agr)[1] == "igraph") {
    return(get.adjacency(agr, sparse = FALSE))
  }
  if (class(agr)[1] == "character") {
    if (length(agr) %% 3 != 0) {
      stop("'The character object' is not in a valid form")
    }
    seqt <- seq(1, length(agr), 3)
    b <- agr[seqt]
    agrn <- agr[-seqt]
    bn <- c()
    for (i in 1:length(b)) {
      if (b[i] != "a" && b[i] != "l" && b[i] != "b") {
        stop("'The numeric object' is not in a valid form")
      }
      if (b[i] == "l") {
        bn[i] <- 10
      }
      if (b[i] == "a") {
        bn[i] <- 1
      }
      if (b[i] == "b") {
        bn[i] <- 100
      }
    }
    Ragr <- RR(agrn)
    ma <- length(Ragr)
    mat <- matrix(rep(0, (ma)^2), ma, ma)
    for (i in seq(1, length(agrn), 2)) {
      if ((bn[(i + 1) / 2] == 1 && mat[SPl(Ragr, agrn[i]), SPl(Ragr, agrn[i + 1])] %% 10 != 1) || (bn[(i + 1) / 2] == 10 && mat[SPl(Ragr, agrn[i]), SPl(Ragr, agrn[i + 1])] %% 100 < 10) || (bn[(i + 1) / 2] == 100 && mat[SPl(Ragr, agrn[i]), SPl(Ragr, agrn[i + 1])] < 100)) {
        mat[SPl(Ragr, agrn[i]), SPl(Ragr, agrn[i + 1])] <- mat[SPl(Ragr, agrn[i]), SPl(Ragr, agrn[i + 1])] + bn[(i + 1) / 2]
        if (bn[(i + 1) / 2] == 10 || bn[(i + 1) / 2] == 100) {
          mat[SPl(Ragr, agrn[i + 1]), SPl(Ragr, agrn[i])] <- mat[SPl(Ragr, agrn[i + 1]), SPl(Ragr, agrn[i])] + bn[(i + 1) / 2]
        }
      }
    }
    rownames(mat) <- Ragr
    colnames(mat) <- Ragr
  }
  return(mat)
}




`RG` <- function(amat, M = c(), C = c(), showmat = TRUE, plot = FALSE, plotfun = plotGraph, ...) {
  if (class(amat)[1] == "igraph" || class(amat)[1] == "graphNEL" || class(amat)[1] == "character") {
    amat <- grMAT(amat)
  }
  if (is(amat, "matrix")) {
    if (nrow(amat) == ncol(amat)) {
      if (length(rownames(amat)) != ncol(amat)) {
        rownames(amat) <- 1:ncol(amat)
        colnames(amat) <- 1:ncol(amat)
      }
    } else {
      stop("'object' is not in a valid adjacency matrix form")
    }
  }
  if (!is(amat, "matrix")) {
    stop("'object' is not in a valid form")
  }


  S <- C
  St <- c()
  while (identical(S, St) == FALSE) {
    St <- S
    for (j in S) {
      for (i in rownames(amat)) {
        if (amat[i, j] %% 10 == 1) {
          S <- c(i, S[S != i])
        }
      }
    }
  }


  amatr <- amat
  amatt <- 2 * amat
  while (identical(amatr, amatt) == FALSE) {
    amatt <- amatr

    ############################################################ 1
    amat21 <- amatr
    for (kk in M) {
      for (kkk in 1:ncol(amatr)) {
        amat31 <- amatr
        if (amatr[kkk, kk] %% 10 == 1 || amatr[kk, kkk] %% 10 == 1) {
          amat31[kk, kkk] <- amatr[kkk, kk]
          amat31[kkk, kk] <- amatr[kk, kkk]
        }

        idx <- which(amat31[, kk] %% 10 == 1)
        lenidx <- length(idx)
        if ((lenidx > 1 && amat31[kkk, kk] %% 10 == 1)) {
          for (ii in 1:(lenidx)) {
            # for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], kkk] %% 10 == 0 && idx[ii] != kkk) {
              amat21[idx[ii], kkk] <- TRUE
            }
          }
        }
      }
    }

    amatr <- amat21

    ################################################################ 2

    amat22 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in S) {
      idx <- which(amatr[, kk] %% 10 == 1)
      idy <- which(amatr[, kk] > 99)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idx[ii], idy[jj]] %% 10 == 0 && idx[ii] != idy[jj]) {
              amat22[idx[ii], idy[jj]] <- 1
            }
          }
        }
      }
    }
    amatr <- amat22 + amatr

    ################################################################# 3

    amat33 <- t(amatr)
    amat23 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amat33[, kk] %% 10 == 1)
      idy <- which(amat33[, kk] %% 100 > 9)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idy[jj], idx[ii]] %% 10 == 0 && idx[ii] != idy[jj]) {
              amat23[idy[jj], idx[ii]] <- 1
            }
          }
        }
      }
    }
    amatr <- amat23 + amatr

    ################################################################## 4
    amat24 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amatr[, kk] %% 100 > 9)
      idy <- which(amatr[, kk] > 99)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idx[ii], idy[jj]] %% 10 == 0 && idx[ii] != idy[jj]) {
              amat24[idx[ii], idy[jj]] <- 1
            }
          }
        }
      }
    }
    amatr <- amat24 + amatr

    #################################################################### 5



    amat35 <- t(amatr)
    amat25 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amat35[, kk] %% 10 == 1)
      lenidx <- length(idx)
      if ((lenidx > 1)) {
        for (ii in 1:(lenidx - 1)) {
          for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], idx[jj]] < 100) {
              amat25[idx[ii], idx[jj]] <- 100
            }
          }
        }
      }
    }
    amatr <- amat25 + t(amat25) + amatr

    ###################################################################### 6
    amat36 <- t(amatr)
    amat26 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amat36[, kk] %% 10 == 1)
      idy <- which(amat36[, kk] > 99)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idy[jj], idx[ii]] < 100 && idx[ii] != idy[jj]) {
              amat26[idy[jj], idx[ii]] <- 100
            }
          }
        }
      }
    }
    amatr <- amat26 + t(amat26) + amatr

    ################################################################# 7

    amat27 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in S) {
      idx <- which(amatr[, kk] > 99)
      lenidx <- length(idx)
      if ((lenidx > 1)) {
        for (ii in 1:(lenidx - 1)) {
          for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], idx[jj]] < 100) {
              amat27[idx[ii], idx[jj]] <- 100
            }
          }
        }
      }
    }
    amatr <- amat27 + t(amat27) + amatr

    ################################################################ 8

    amat28 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in S) {
      idx <- which(amatr[, kk] %% 10 == 1)
      lenidx <- length(idx)
      if ((lenidx > 1)) {
        for (ii in 1:(lenidx - 1)) {
          for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], idx[jj]] %% 100 < 10) {
              amat28[idx[ii], idx[jj]] <- 10
            }
          }
        }
      }
    }
    amatr <- amat28 + t(amat28) + amatr

    ################################################################# 9

    amat29 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amatr[, kk] %% 10 == 1)
      idy <- which(amatr[, kk] %% 100 > 9)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idx[ii], idy[jj]] %% 100 < 10 && idx[ii] != idy[jj]) {
              amat29[idx[ii], idy[jj]] <- 10
            }
          }
        }
      }
    }
    amatr <- amat29 + t(amat29) + amatr

    ################################################################## 10

    amat20 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amatr[, kk] %% 100 > 9)
      lenidx <- length(idx)
      if ((lenidx > 1)) {
        for (ii in 1:(lenidx - 1)) {
          for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], idx[jj]] %% 100 < 10) {
              amat20[idx[ii], idx[jj]] <- 10
            }
          }
        }
      }
    }
    amatr <- amat20 + t(amat20) + amatr
  }
  Mn <- c()
  Cn <- c()
  for (i in M) {
    Mn <- c(Mn, which(rownames(amat) == i))
  }
  for (i in C) {
    Cn <- c(Cn, which(rownames(amat) == i))
  }
  if (length(Mn) > 0 && length(Cn) > 0) {
    fr <- amatr[-c(Mn, Cn), -c(Mn, Cn)]
  }
  if (length(Mn) > 0 && length(Cn) == 0) {
    fr <- amatr[-c(Mn), -c(Mn)]
  }
  if (length(Mn) == 0 && length(Cn) > 0) {
    fr <- amatr[-c(Cn), -c(Cn)]
  }
  if (length(Mn) == 0 && length(Cn) == 0) {
    fr <- amatr
  }
  if (plot == TRUE) {
    plotfun(fr, ...)
  }
  if (showmat == FALSE) {
    invisible(fr)
  } else {
    return(fr)
  }
}
##############################################################################
##############################################################################




`SG` <- function(amat, M = c(), C = c(), showmat = TRUE, plot = FALSE, plotfun = plotGraph, ...) {
  if (class(amat)[1] == "igraph" || class(amat)[1] == "graphNEL" || class(amat)[1] == "character") {
    amat <- grMAT(amat)
  }
  if (is(amat, "matrix")) {
    if (nrow(amat) == ncol(amat)) {
      if (length(rownames(amat)) != ncol(amat)) {
        rownames(amat) <- 1:ncol(amat)
        colnames(amat) <- 1:ncol(amat)
      }
    } else {
      stop("'object' is not in a valid adjacency matrix form")
    }
  }
  if (!is(amat, "matrix")) {
    stop("'object' is not in a valid form")
  }

  S <- C
  St <- c()
  while (identical(S, St) == FALSE) {
    St <- S
    for (j in S) {
      for (i in rownames(amat)) {
        if (amat[i, j] %% 10 == 1) {
          S <- c(i, S[S != i])
        }
      }
    }
  }

  amatr <- amat
  amatt <- 2 * amat
  while (identical(amatr, amatt) == FALSE) {
    amatt <- amatr

    ############################################################ 1
    amat21 <- amatr
    for (kk in M) {
      for (kkk in 1:ncol(amatr)) {
        amat31 <- amatr
        if (amatr[kkk, kk] %% 10 == 1 || amatr[kk, kkk] %% 10 == 1) {
          amat31[kk, kkk] <- amatr[kkk, kk]
          amat31[kkk, kk] <- amatr[kk, kkk]
        }

        idx <- which(amat31[, kk] %% 10 == 1)
        lenidx <- length(idx)
        if ((lenidx > 1 && amat31[kkk, kk] %% 10 == 1)) {
          for (ii in 1:(lenidx)) {
            # for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], kkk] %% 10 == 0 && idx[ii] != kkk) {
              amat21[idx[ii], kkk] <- TRUE
            }
          }
        }
      }
    }

    amatr <- amat21

    ################################################################ 2

    amat22 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in S) {
      idx <- which(amatr[, kk] %% 10 == 1)
      idy <- which(amatr[, kk] > 99)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idx[ii], idy[jj]] %% 10 == 0 && idx[ii] != idy[jj]) {
              amat22[idx[ii], idy[jj]] <- 1
            }
          }
        }
      }
    }
    amatr <- amat22 + amatr

    ################################################################# 3

    amat33 <- t(amatr)
    amat23 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amat33[, kk] %% 10 == 1)
      idy <- which(amat33[, kk] %% 100 > 9)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idy[jj], idx[ii]] %% 10 == 0 && idx[ii] != idy[jj]) {
              amat23[idy[jj], idx[ii]] <- 1
            }
          }
        }
      }
    }
    amatr <- amat23 + amatr

    ################################################################## 4
    amat24 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amatr[, kk] %% 100 > 9)
      idy <- which(amatr[, kk] > 99)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idx[ii], idy[jj]] %% 10 == 0 && idx[ii] != idy[jj]) {
              amat24[idx[ii], idy[jj]] <- 1
            }
          }
        }
      }
    }
    amatr <- amat24 + amatr

    #################################################################### 5



    amat35 <- t(amatr)
    amat25 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amat35[, kk] %% 10 == 1)
      lenidx <- length(idx)
      if ((lenidx > 1)) {
        for (ii in 1:(lenidx - 1)) {
          for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], idx[jj]] < 100) {
              amat25[idx[ii], idx[jj]] <- 100
            }
          }
        }
      }
    }
    amatr <- amat25 + t(amat25) + amatr

    ###################################################################### 6
    amat36 <- t(amatr)
    amat26 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amat36[, kk] %% 10 == 1)
      idy <- which(amat36[, kk] > 99)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idy[jj], idx[ii]] < 100 && idx[ii] != idy[jj]) {
              amat26[idy[jj], idx[ii]] <- 100
            }
          }
        }
      }
    }
    amatr <- amat26 + t(amat26) + amatr

    ################################################################# 7

    amat27 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in S) {
      idx <- which(amatr[, kk] > 99)
      lenidx <- length(idx)
      if ((lenidx > 1)) {
        for (ii in 1:(lenidx - 1)) {
          for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], idx[jj]] < 100) {
              amat27[idx[ii], idx[jj]] <- 100
            }
          }
        }
      }
    }
    amatr <- amat27 + t(amat27) + amatr

    ################################################################ 8

    amat28 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in S) {
      idx <- which(amatr[, kk] %% 10 == 1)
      lenidx <- length(idx)
      if ((lenidx > 1)) {
        for (ii in 1:(lenidx - 1)) {
          for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], idx[jj]] %% 100 < 10) {
              amat28[idx[ii], idx[jj]] <- 10
            }
          }
        }
      }
    }
    amatr <- amat28 + t(amat28) + amatr

    ################################################################# 9

    amat29 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amatr[, kk] %% 10 == 1)
      idy <- which(amatr[, kk] %% 100 > 9)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idx[ii], idy[jj]] %% 100 < 10 && idx[ii] != idy[jj]) {
              amat29[idx[ii], idy[jj]] <- 10
            }
          }
        }
      }
    }
    amatr <- amat29 + t(amat29) + amatr

    ################################################################## 10

    amat20 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amatr[, kk] %% 100 > 9)
      lenidx <- length(idx)
      if ((lenidx > 1)) {
        for (ii in 1:(lenidx - 1)) {
          for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], idx[jj]] %% 100 < 10) {
              amat20[idx[ii], idx[jj]] <- 10
            }
          }
        }
      }
    }
    amatr <- amat20 + t(amat20) + amatr
  }

  for (i in 1:ncol(amatr)) {
    for (j in 1:ncol(amatr)) {
      if (amatr[i, j] %% 100 > 9) {
        amatr[i, j] <- 10
        for (k in 1:ncol(amatr)) {
          if (amatr[k, j] == 100) {
            amatr[j, k] <- 1
            amatr[k, j] <- 0
          }
        }
      }
    }
  }

  SS <- S
  SSt <- c()
  while (identical(SS, SSt) == FALSE) {
    SSt <- SS
    for (j in SS) {
      for (i in rownames(amat)) {
        if (amatr[i, j] %% 10 == 1) {
          SS <- c(i, SS[SS != i])
        }
      }
    }
  }

  for (i in SS) {
    for (j in SS) {
      if (amatr[i, j] %% 10 == 1) {
        amatr[i, j] <- 10
        amatr[j, i] <- 10
      }
    }
  }



  Mn <- c()
  Cn <- c()
  for (i in M) {
    Mn <- c(Mn, which(rownames(amat) == i))
  }
  for (i in C) {
    Cn <- c(Cn, which(rownames(amat) == i))
  }
  if (length(Mn) > 0 && length(Cn) > 0) {
    fr <- amatr[-c(Mn, Cn), -c(Mn, Cn)]
  }
  if (length(Mn) > 0 && length(Cn) == 0) {
    fr <- amatr[-c(Mn), -c(Mn)]
  }
  if (length(Mn) == 0 && length(Cn) > 0) {
    fr <- amatr[-c(Cn), -c(Cn)]
  }
  if (length(Mn) == 0 && length(Cn) == 0) {
    fr <- amatr
  }
  if (plot == TRUE) {
    plotfun(fr, ...)
  }
  if (showmat == FALSE) {
    invisible(fr)
  } else {
    return(fr)
  }
}
##############################################################################
##############################################################################




`AG` <- function(amat, M = c(), C = c(), showmat = TRUE, plot = FALSE, plotfun = plotGraph, ...) {
  if (class(amat)[1] == "igraph" || class(amat)[1] == "graphNEL" || class(amat)[1] == "character") {
    amat <- grMAT(amat)
  }
  if (is(amat, "matrix")) {
    if (nrow(amat) == ncol(amat)) {
      if (length(rownames(amat)) != ncol(amat)) {
        rownames(amat) <- 1:ncol(amat)
        colnames(amat) <- 1:ncol(amat)
      }
    } else {
      stop("'object' is not in a valid adjacency matrix form")
    }
  }
  if (!is(amat, "matrix")) {
    stop("'object' is not in a valid form")
  }

  S <- C
  St <- c()
  while (identical(S, St) == FALSE) {
    St <- S
    for (j in S) {
      for (i in rownames(amat)) {
        if (amat[i, j] %% 10 == 1) {
          S <- c(i, S[S != i])
        }
      }
    }
  }

  amatr <- amat
  amatt <- 2 * amat
  while (identical(amatr, amatt) == FALSE) {
    amatt <- amatr


    ############################################################ 1
    amat21 <- amatr
    for (kk in M) {
      for (kkk in 1:ncol(amatr)) {
        amat31 <- amatr
        if (amatr[kkk, kk] %% 10 == 1 || amatr[kk, kkk] %% 10 == 1) {
          amat31[kk, kkk] <- amatr[kkk, kk]
          amat31[kkk, kk] <- amatr[kk, kkk]
        }

        idx <- which(amat31[, kk] %% 10 == 1)
        lenidx <- length(idx)
        if ((lenidx > 1 && amat31[kkk, kk] %% 10 == 1)) {
          for (ii in 1:(lenidx)) {
            # for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], kkk] %% 10 == 0 && idx[ii] != kkk) {
              amat21[idx[ii], kkk] <- TRUE
            }
          }
        }
      }
    }

    amatr <- amat21

    ################################################################ 2

    amat22 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in S) {
      idx <- which(amatr[, kk] %% 10 == 1)
      idy <- which(amatr[, kk] > 99)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idx[ii], idy[jj]] %% 10 == 0 && idx[ii] != idy[jj]) {
              amat22[idx[ii], idy[jj]] <- 1
            }
          }
        }
      }
    }
    amatr <- amat22 + amatr

    ################################################################# 3

    amat33 <- t(amatr)
    amat23 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amat33[, kk] %% 10 == 1)
      idy <- which(amat33[, kk] %% 100 > 9)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idy[jj], idx[ii]] %% 10 == 0 && idx[ii] != idy[jj]) {
              amat23[idy[jj], idx[ii]] <- 1
            }
          }
        }
      }
    }
    amatr <- amat23 + amatr

    ################################################################## 4
    amat24 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amatr[, kk] %% 100 > 9)
      idy <- which(amatr[, kk] > 99)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idx[ii], idy[jj]] %% 10 == 0 && idx[ii] != idy[jj]) {
              amat24[idx[ii], idy[jj]] <- 1
            }
          }
        }
      }
    }
    amatr <- amat24 + amatr

    #################################################################### 5



    amat35 <- t(amatr)
    amat25 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amat35[, kk] %% 10 == 1)
      lenidx <- length(idx)
      if ((lenidx > 1)) {
        for (ii in 1:(lenidx - 1)) {
          for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], idx[jj]] < 100) {
              amat25[idx[ii], idx[jj]] <- 100
            }
          }
        }
      }
    }
    amatr <- amat25 + t(amat25) + amatr

    ###################################################################### 6
    amat36 <- t(amatr)
    amat26 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amat36[, kk] %% 10 == 1)
      idy <- which(amat36[, kk] > 99)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idy[jj], idx[ii]] < 100 && idx[ii] != idy[jj]) {
              amat26[idy[jj], idx[ii]] <- 100
            }
          }
        }
      }
    }
    amatr <- amat26 + t(amat26) + amatr

    ################################################################# 7

    amat27 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in S) {
      idx <- which(amatr[, kk] > 99)
      lenidx <- length(idx)
      if ((lenidx > 1)) {
        for (ii in 1:(lenidx - 1)) {
          for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], idx[jj]] < 100) {
              amat27[idx[ii], idx[jj]] <- 100
            }
          }
        }
      }
    }
    amatr <- amat27 + t(amat27) + amatr

    ################################################################ 8

    amat28 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in S) {
      idx <- which(amatr[, kk] %% 10 == 1)
      lenidx <- length(idx)
      if ((lenidx > 1)) {
        for (ii in 1:(lenidx - 1)) {
          for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], idx[jj]] %% 100 < 10) {
              amat28[idx[ii], idx[jj]] <- 10
            }
          }
        }
      }
    }
    amatr <- amat28 + t(amat28) + amatr

    ################################################################# 9

    amat29 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amatr[, kk] %% 10 == 1)
      idy <- which(amatr[, kk] %% 100 > 9)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idx[ii], idy[jj]] %% 100 < 10 && idx[ii] != idy[jj]) {
              amat29[idx[ii], idy[jj]] <- 10
            }
          }
        }
      }
    }
    amatr <- amat29 + t(amat29) + amatr

    ################################################################## 10

    amat20 <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in M) {
      idx <- which(amatr[, kk] %% 100 > 9)
      lenidx <- length(idx)
      if ((lenidx > 1)) {
        for (ii in 1:(lenidx - 1)) {
          for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], idx[jj]] %% 100 < 10) {
              amat20[idx[ii], idx[jj]] <- 10
            }
          }
        }
      }
    }
    amatr <- amat20 + t(amat20) + amatr
  }

  for (i in 1:ncol(amatr)) {
    for (j in 1:ncol(amatr)) {
      if (amatr[i, j] %% 100 > 9) {
        amatr[i, j] <- 10
        for (k in 1:ncol(amatr)) {
          if (amatr[k, j] == 100) {
            amatr[j, k] <- 1
            amatr[k, j] <- 0
          }
        }
      }
    }
  }


  SS <- S
  SSt <- c()
  while (identical(SS, SSt) == FALSE) {
    SSt <- SS
    for (j in SS) {
      for (i in rownames(amat)) {
        if (amatr[i, j] %% 10 == 1) {
          SS <- c(i, SS[SS != i])
        }
      }
    }
  }

  for (i in SS) {
    for (j in SS) {
      if (amatr[i, j] %% 10 == 1) {
        amatr[i, j] <- 10
        amatr[j, i] <- 10
      }
    }
  }



  amatn <- amatr
  for (kk in 1:ncol(amatr)) {
    for (kkk in 1:ncol(amatr)) {
      amat3n <- amatr
      if (amatr[kkk, kk] %% 10 == 1 || amatr[kk, kkk] %% 10 == 1) {
        amat3n[kk, kkk] <- amatr[kkk, kk]
        amat3n[kkk, kk] <- amatr[kk, kkk]
      }

      idx <- which(amat3n[, kk] %% 10 == 1)
      lenidx <- length(idx)
      if ((lenidx > 1 && amat3n[kkk, kk] %% 10 == 1)) {
        for (ii in 1:(lenidx)) {
          # for (jj in (ii + 1):lenidx) {
          if (amatr[idx[ii], kkk] %% 10 == 0 && idx[ii] != kkk) {
            amatn[idx[ii], kkk] <- TRUE
          }
        }
      }
    }
  }


  amatt <- 2 * amat
  while (identical(amatr, amatt) == FALSE) {
    amatt <- amatr


    amat27n <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in 1:ncol(amatr)) {
      idx <- which(amatn[, kk] > 99)
      lenidx <- length(idx)
      if ((lenidx > 1)) {
        for (ii in 1:(lenidx - 1)) {
          for (jj in (ii + 1):lenidx) {
            if (amatr[idx[ii], idx[jj]] < 100 && (amatn[kk, idx[ii]] %% 10 == 1 || amatn[kk, idx[jj]] %% 10 == 1)) {
              amat27n[idx[ii], idx[jj]] <- 100
            }
          }
        }
      }
    }
    amatn <- amat27n + t(amat27n) + amatn
    amatr <- amat27n + t(amat27n) + amatr

    amat22n <- matrix(rep(0, length(amat)), dim(amat))
    for (kk in 1:ncol(amatr)) {
      idx <- which(amatn[, kk] %% 10 == 1)
      idy <- which(amatn[, kk] > 99)
      lenidx <- length(idx)
      lenidy <- length(idy)
      if ((lenidx > 0 && lenidy > 0)) {
        for (ii in 1:(lenidx)) {
          for (jj in 1:lenidy) {
            if (amatr[idx[ii], idy[jj]] %% 10 == 0 && idx[ii] != idy[jj] && amatn[kk, idy[jj]] %% 10 == 1) {
              amat22n[idx[ii], idy[jj]] <- 1
            }
          }
        }
      }
    }
    amatn <- amat22n + amatn
    amatr <- amat22n + amatr
  }

  for (i in 1:ncol(amatr)) {
    for (j in 1:ncol(amatr)) {
      if (amatr[i, j] == 101) {
        amatr[i, j] <- 1
        amatr[j, i] <- 0
      }
    }
  }

  Mn <- c()
  Cn <- c()
  for (i in M) {
    Mn <- c(Mn, which(rownames(amat) == i))
  }
  for (i in C) {
    Cn <- c(Cn, which(rownames(amat) == i))
  }
  if (length(Mn) > 0 && length(Cn) > 0) {
    fr <- amatr[-c(Mn, Cn), -c(Mn, Cn)]
  }
  if (length(Mn) > 0 && length(Cn) == 0) {
    fr <- amatr[-c(Mn), -c(Mn)]
  }
  if (length(Mn) == 0 && length(Cn) > 0) {
    fr <- amatr[-c(Cn), -c(Cn)]
  }
  if (length(Mn) == 0 && length(Cn) == 0) {
    fr <- amatr
  }
  if (plot == TRUE) {
    plotfun(fr, ...)
  }
  if (showmat == FALSE) {
    invisible(fr)
  } else {
    return(fr)
  }
}

##############################################################################
##############################################################################




Max <- function(amat) {
  if (class(amat)[1] == "igraph" || class(amat)[1] == "graphNEL" || class(amat)[1] == "character") {
    amat <- grMAT(amat)
  }
  if (is(amat, "matrix")) {
    if (nrow(amat) == ncol(amat)) {
      if (length(rownames(amat)) != ncol(amat)) {
        rownames(amat) <- 1:ncol(amat)
        colnames(amat) <- 1:ncol(amat)
      }
    } else {
      stop("'object' is not in a valid adjacency matrix form")
    }
  }
  if (!is(amat, "matrix")) {
    stop("'object' is not in a valid form")
  }

  na <- ncol(amat)
  at <- which(amat + t(amat) + diag(na) == 0, arr.ind = TRUE)
  if (dim(at)[1] > 0) {
    for (i in 1:dim(at)[1]) {
      S <- at[i, ]
      St <- c()
      while (identical(S, St) == FALSE) {
        St <- S
        for (j in S) {
          for (k in 1:na) {
            if (amat[k, j] %% 10 == 1) {
              S <- c(k, S[S != k])
            }
          }
        }
      }
      one <- at[i, 1]
      two <- at[i, 2]
      onearrow <- c()
      onearc <- c()
      twoarrow <- c()
      twoarc <- c()
      Sr <- S
      Sr <- Sr[Sr != at[i, 1]]
      Sr <- Sr[Sr != at[i, 2]]
      if (length(Sr) > 0) {
        for (j in Sr) {
          if (amat[one, j] %% 10 == 1) {
            onearrow <- c(onearrow, j)
          }
          if (amat[one, j] > 99) {
            onearc <- c(onearc, j)
          }
        }
        for (j in Sr) {
          if (amat[two, j] %% 10 == 1) {
            for (k in onearc) {
              if (j == k || amat[j, k] > 99) {
                amat[at[i, 2], at[i, 1]] <- 1
              }
            }
            twoarrow <- c(twoarrow, j)
          }
          if (amat[two, j] > 99) {
            for (k in onearrow) {
              if (j == k || amat[j, k] > 99) {
                amat[at[i, 1], at[i, 2]] <- 1
              }
            }
            for (k in onearc) {
              if (j == k || amat[j, k] > 99) {
                amat[at[i, 1], at[i, 2]] <- 100
                amat[at[i, 2], at[i, 1]] <- 100
              }
            }
            twoarc <- c(twoarc, j)
          }
        }
      }
      if (length(c(onearc, onearrow, twoarc, twoarrow)) > 0) {
        for (j in c(onearc, onearrow, twoarc, twoarrow)) {
          Sr <- Sr[Sr != j]
        }
        onearcn <- c()
        twoarcn <- c()
        onearrown <- c()
        twoarrown <- c()
        while (length(Sr) > 0) {
          for (l in onearc) {
            for (j in Sr) {
              if (amat[l, j] > 99) {
                onearcn <- c(onearcn, j)
              }
            }
          }
          for (l in onearrow) {
            for (j in Sr) {
              if (amat[l, j] > 99) {
                onearrown <- c(onearrown, j)
              }
            }
          }

          for (l in twoarc) {
            for (j in Sr) {
              if (amat[l, j] > 99) {
                for (k in onearrow) {
                  if (j == k || amat[j, k] > 99) {
                    amat[at[i, 1], at[i, 2]] <- 1
                  }
                }
                for (k in onearc) {
                  if (j == k || amat[j, k] > 99) {
                    amat[at[i, 1], at[i, 2]] <- 100
                    amat[at[i, 2], at[i, 1]] <- 100
                  }
                }
                twoarcn <- c(twoarcn, j)
              }
            }
          }
          for (l in twoarrow) {
            for (j in Sr) {
              if (amat[l, j] > 99) {
                for (k in onearc) {
                  if (j == k || amat[j, k] > 99) {
                    amat[at[i, 1], at[i, 2]] <- 100
                    amat[at[i, 2], at[i, 1]] <- 100
                  }
                }
                twoarrown <- c(twoarrown, j)
              }
            }
          }
          if (length(c(onearcn, onearrown, twoarcn, twoarrown)) == 0) {
            break
          }
          for (j in c(onearcn, onearrown, twoarcn, twoarrown)) {
            Sr <- Sr[Sr != j]
          }
          onearc <- onearcn
          twoarc <- twoarcn
          onearrow <- onearrown
          twoarrow <- twoarrown
          onearcn <- c()
          twoarcn <- c()
          onearrown <- c()
          twoarrown <- c()
        }
      }
    }
  }
  return(amat)
}
#####################################################################################################
######################################################################################################




msep <- function(a, alpha, beta, C = c()) {
  if (class(a)[1] == "igraph" || class(a)[1] == "graphNEL" || class(a)[1] == "character") {
    a <- grMAT(a)
  }
  if (is(a, "matrix")) {
    if (nrow(a) == ncol(a)) {
      if (length(rownames(a)) != ncol(a)) {
        rownames(a) <- 1:ncol(a)
        colnames(a) <- 1:ncol(a)
      }
    } else {
      stop("'object' is not in a valid adjacency matrix form")
    }
  }
  if (!is(a, "matrix")) {
    stop("'object' is not in a valid form")
  }

  M <- rem(rownames(a), c(alpha, beta, C))
  ar <- Max(RG(a, M, C))

  # aralpha<-as.matrix(ar[SPl(c(alpha,beta),alpha),SPl(c(alpha,beta),beta)])
  # arbeta<-as.matrix(ar[SPl(c(alpha,beta),beta),SPl(c(alpha,beta),alpha)])
  # for(i in 1:length(alpha)){
  # 	for(j in 1:length(beta)){
  # 		if(aralpha[j,i]!=0 || arbeta[j,i]!=0){
  # 			return("NOT separated")
  # 			break
  # 			break}}}
  if (max(ar[as.character(beta), as.character(alpha)] + ar[as.character(alpha), as.character(beta)] != 0)) {
    return(FALSE)
  }
  return(TRUE)
}
############################################################################
############################################################################




`MRG` <- function(amat, M = c(), C = c(), showmat = TRUE, plot = FALSE, plotfun = plotGraph, ...) {
  return(Max(RG(amat, M, C, showmat, plot, plotfun = plotGraph, ...)))
}
##########################################################################
##########################################################################




`MSG` <- function(amat, M = c(), C = c(), showmat = TRUE, plot = FALSE, plotfun = plotGraph, ...) {
  return(Max(SG(amat, M, C, showmat, plot, plotfun = plotGraph, ...)))
}
############################################################################
###########################################################################




`MAG` <- function(amat, M = c(), C = c(), showmat = TRUE, plot = FALSE, plotfun = plotGraph, ...) {
  return(Max(AG(amat, M, C, showmat, plot, plotfun = plotGraph, ...)))
}
############################################################################
############################################################################
# Plot<-function(a)
# {
# 	if(class(a)[1] == "igraph" || class(a)[1] == "graphNEL" || class(a)[1] == "character") {
# 		a<-grMAT(a)}
# 	if(is(a,"matrix")){
# 		if(nrow(a)==ncol(a)){
# 			if(length(rownames(a))!=ncol(a)){
# 	 			rownames(a)<-1:ncol(a)
# 	 			colnames(a)<-1:ncol(a)}
# 			l1<-c()
# 			l2<-c()
# 			for (i in 1:nrow(a)){
# 				for (j in i:nrow(a)){
# 					if (a[i,j]==1){
# 						l1<-c(l1,i,j)
# 						l2<-c(l2,2)}
# 					if (a[j,i]%%10==1){
# 						l1<-c(l1,j,i)
# 						l2<-c(l2,2)}
# 					if (a[i,j]==10){
# 						l1<-c(l1,i,j)
# 						l2<-c(l2,0)}
# 					if (a[i,j]==11){
# 						l1<-c(l1,i,j,i,j)
# 						l2<-c(l2,2,0)}
# 					if (a[i,j]==100){
# 						l1<-c(l1,i,j)
# 						l2<-c(l2,3)}
# 					if (a[i,j]==101){
# 						l1<-c(l1,i,j,i,j)
# 						l2<-c(l2,2,3)}
# 					if (a[i,j]==110){
# 						l1<-c(l1,i,j,i,j)
# 						l2<-c(l2,0,3)}
# 					if (a[i,j]==111){
# 						l1<-c(l1,i,j,i,j,i,j)
# 						l2<-c(l2,2,0,3)}
# 					}
# 				}
# 			}
# 		else {
#      	  stop("'object' is not in a valid adjacency matrix form")
#    	}
#    	if(length(l1)>0){
# 		l1<-l1-1
#    		agr<-graph(l1,n=nrow(a),directed=TRUE)}
#    	if(length(l1)==0){
#    		agr<-graph.empty(n=nrow(a), directed=TRUE)
# 		return(plot(agr,vertex.label=rownames(a)))}
#    	return( tkplot(agr, layout=layout.kamada.kawai, edge.curved=FALSE:TRUE, vertex.label=rownames(a),edge.arrow.mode=l2))
# 	}
# 	else {
#        stop("'object' is not in a valid format")}
# }
############################################################################
############################################################################




MarkEqRcg <- function(amat, bmat) {
  if (class(amat)[1] == "igraph") {
    amat <- grMAT(amat)
  }
  if (class(amat)[1] == "graphNEL") {
    amat <- grMAT(amat)
  }
  if (class(amat)[1] == "character") {
    amat <- grMAT(amat)
  }
  if (length(rownames(amat)) != ncol(amat) || length(colnames(amat)) != ncol(amat)) {
    rownames(amat) <- 1:ncol(amat)
    colnames(amat) <- 1:ncol(amat)
  }
  if (class(bmat)[1] == "igraph") {
    bmat <- grMAT(bmat)
  }
  if (class(bmat)[1] == "graphNEL") {
    bmat <- grMAT(bmat)
  }
  if (class(bmat)[1] == "character") {
    bmat <- grMAT(bmat)
  }
  if (length(rownames(bmat)) != ncol(bmat) || length(colnames(bmat)) != ncol(bmat)) {
    rownames(bmat) <- 1:ncol(bmat)
    colnames(bmat) <- 1:ncol(bmat)
  }
  bmat <- bmat[rownames(amat), colnames(amat), drop = FALSE]
  na <- ncol(amat)
  nb <- ncol(bmat)
  if (na != nb) {
    return(FALSE)
  }
  at <- which(amat + t(amat) + diag(na) == 0, arr.ind = TRUE)
  bt <- which(bmat + t(bmat) + diag(na) == 0, arr.ind = TRUE)
  if (identical(at, bt) == FALSE) {
    return(FALSE)
  }
  ai <- c()
  bi <- c()
  if (dim(at)[1] != 0) {
    for (i in 1:dim(at)[1]) {
      for (j in 1:na) {
        if ((amat[at[i, 1], j] %% 10 == 1 || amat[at[i, 1], j] > 99) && (amat[at[i, 2], j] %% 10 == 1 || amat[at[i, 2], j] > 99)) {
          ai <- c(ai, j)
        }
        if ((bmat[bt[i, 1], j] %% 10 == 1 || bmat[bt[i, 1], j] > 99) && (bmat[bt[i, 2], j] %% 10 == 1 || bmat[bt[i, 2], j] > 99)) {
          bi <- c(bi, j)
        }
      }
      if (identical(ai, bi) == FALSE) {
        return(FALSE)
      }
      ai <- c()
      bi <- c()
    }
  }
  return(TRUE)
}
########################################################################################
########################################################################################




`MarkEqMag` <- function(amat, bmat) {
  if (class(amat)[1] == "igraph") {
    amat <- grMAT(amat)
  }
  if (class(amat)[1] == "graphNEL") {
    amat <- grMAT(amat)
  }
  if (class(amat)[1] == "character") {
    amat <- grMAT(amat)
  }
  if (length(rownames(amat)) != ncol(amat) || length(colnames(amat)) != ncol(amat)) {
    rownames(amat) <- 1:ncol(amat)
    colnames(amat) <- 1:ncol(amat)
  }
  if (class(bmat)[1] == "igraph") {
    bmat <- grMAT(bmat)
  }
  if (class(bmat)[1] == "graphNEL") {
    bmat <- grMAT(bmat)
  }
  if (class(bmat)[1] == "character") {
    bmat <- grMAT(bmat)
  }
  if (length(rownames(bmat)) != ncol(bmat) || length(colnames(bmat)) != ncol(bmat)) {
    rownames(bmat) <- 1:ncol(bmat)
    colnames(bmat) <- 1:ncol(bmat)
  }
  bmat <- bmat[rownames(amat), colnames(amat), drop = FALSE]
  na <- ncol(amat)
  nb <- ncol(bmat)
  if (na != nb) {
    return(FALSE)
  }
  at <- which(amat + t(amat) + diag(na) == 0, arr.ind = TRUE)
  bt <- which(bmat + t(bmat) + diag(na) == 0, arr.ind = TRUE)
  if (identical(at, bt) == FALSE) {
    return(FALSE)
  }
  a <- c()
  b <- c()
  if (length(at) > 0) {
    for (i in 1:dim(at)[1]) {
      for (j in 1:na) {
        if ((amat[at[i, 1], j] %% 10 == 1 || amat[at[i, 1], j] > 99) && (amat[at[i, 2], j] %% 10 == 1 || amat[at[i, 2], j] > 99)) {
          a <- rbind(a, c(at[i, 1], j, at[i, 2]))
        }
        if ((bmat[bt[i, 1], j] %% 10 == 1 || bmat[bt[i, 1], j] > 99) && (bmat[bt[i, 2], j] %% 10 == 1 || bmat[bt[i, 2], j] > 99)) {
          b <- rbind(b, c(bt[i, 1], j, bt[i, 2]))
        }
      }
    }
    if (identical(a, b) == FALSE) {
      return(FALSE)
    }
  }
  ar <- which(amat %% 10 == 1, arr.ind = TRUE)
  br <- which(bmat %% 10 == 1, arr.ind = TRUE)
  ap <- c()
  bp <- c()
  if (length(ar) > 0) {
    for (i in 1:dim(ar)[1]) {
      for (j in 1:na) {
        if ((amat[ar[i, 1], j] > 99) && (amat[ar[i, 2], j] > 99)) {
          ap <- rbind(ap, c(ar[i, 1], j, ar[i, 2]))
        }
      }
    }
  }
  if (length(br) > 0) {
    for (i in 1:dim(br)[1]) {
      for (j in 1:nb) {
        if ((bmat[br[i, 1], j] > 99) && (bmat[br[i, 2], j] > 99)) {
          bp <- rbind(bp, c(br[i, 1], j, br[i, 2]))
        }
      }
    }
  }
  if (length(ap) > 0) {
    aptt <- ap
    apt <- c(ap, 1)
    Qonen <- c()
    Qtwon <- c()
    while (length(apt) - length(aptt) > 0) {
      apt <- aptt
      for (i in (1:dim(ap)[1])) {
        Qone <- ap[i, 1]
        Qtwo <- ap[i, 2]
        while (length(Qone) > 0) {
          for (l in (1:length(Qone))) {
            J <- which(((amat + t(amat) + diag(na))[ap[i, 3], ] == 0) & ((amat[Qone[l], ] > 99) | (amat[, Qone[l]] %% 100 == 1)))
            for (j in J) {
              for (k in 1:dim(a)[1]) {
                if (min(a[k, ] == c(j, Qone[l], Qtwo[l])) == 1) {
                  a <- rbind(a, ap[i, ])
                  aptt <- aptt[(1:dim(aptt)[1])[-i], ]
                  break
                  break
                  break
                  break
                }
              }
            }
            Q <- which((amat[, ap[i, 3]] %% 10 == 1) & (amat[Qone[l], ] > 99))
            for (q in Q) {
              for (k in 1:dim(a)[1]) {
                if (min(a[k, ] == c(q, Qone[l], Qtwo[l])) == 1) {
                  Qtwon <- c(Qtwon, Qone[l])
                  Qonen <- c(Qonen, q)
                }
              }
            }
          }
          Qtwo <- Qtwon
          Qone <- Qonen
          Qonen <- c()
          Qtwon <- c()
        }
      }
    }
  }
  if (length(bp) > 0) {
    bptt <- bp
    bpt <- c(bp, 1)
    Qbonen <- c()
    Qbtwon <- c()
    while (length(bpt) - length(bptt) > 0) {
      bpt <- bptt
      for (i in (1:dim(bp)[1])) {
        Qbone <- bp[i, 1]
        Qbtwo <- bp[i, 2]
        while (length(Qbone) > 0) {
          for (l in (1:length(Qbone))) {
            J <- which(((bmat + t(bmat) + diag(nb))[bp[i, 3], ] == 0) & ((bmat[Qbone[l], ] > 99) | (bmat[, Qbone[l]] %% 100 == 1)))
            for (j in J) {
              for (k in 1:dim(b)[1]) {
                if (min(b[k, ] == c(j, Qbone[l], Qbtwo[l])) == 1) {
                  b <- rbind(b, bp[i, ])
                  bptt <- bptt[(1:dim(bptt)[1])[-i], ]
                  break
                  break
                  break
                  break
                }
              }
            }
            Qb <- which((bmat[, bp[i, 3]] %% 10 == 1) & (bmat[Qbone[l], ] > 99))
            for (q in Qb) {
              for (k in 1:dim(b)[1]) {
                if (min(b[k, ] == c(q, Qbone[l], Qbtwo[l])) == 1) {
                  Qbtwon <- c(Qbtwon, Qbone[l])
                  Qbonen <- c(Qbonen, q)
                }
              }
            }
          }
          Qbtwo <- Qbtwon
          Qbone <- Qbonen
          Qbonen <- c()
          Qbtwon <- c()
        }
      }
    }
  }
  if (length(a) != length(b)) {
    return(FALSE)
  }
  f <- c()
  if ((length(a) > 0) && (length(b) > 0)) {
    for (i in 1:dim(a)[1]) {
      for (j in 1:dim(b)[1]) {
        f <- c(f, min(a[i, ] == b[j, ]))
      }
      if (max(f) == 0) {
        return(FALSE)
      }
    }
  }
  return(TRUE)
}



RepMarUG <- function(amat) {
  if (class(amat)[1] == "igraph") {
    amat <- grMAT(amat)
  }
  if (class(amat)[1] == "graphNEL") {
    amat <- grMAT(amat)
  }
  if (class(amat)[1] == "character") {
    amat <- grMAT(amat)
  }
  if (length(rownames(amat)) != ncol(amat) || length(colnames(amat)) != ncol(amat)) {
    rownames(amat) <- 1:ncol(amat)
    colnames(amat) <- 1:ncol(amat)
  }
  na <- ncol(amat)
  at <- which(amat + t(amat) + diag(na) == 0, arr.ind = TRUE)
  if (dim(at)[1] != 0) {
    for (i in 1:dim(at)[1]) {
      for (j in 1:na) {
        if ((amat[at[i, 1], j] %% 10 == 1 || amat[at[i, 1], j] > 99) && (amat[at[i, 2], j] %% 10 == 1 || amat[at[i, 2], j] > 99)) {
          return(list(verify = FALSE, amat = NA))
        }
      }
    }
  }
  for (i in 1:na) {
    for (j in 1:na) {
      if (amat[i, j] == 100) {
        amat[i, j] <- 10
      }
      if (amat[i, j] == 1) {
        amat[i, j] <- 10
        amat[j, i] <- 10
      }
    }
  }
  return(list(verify = TRUE, amat = amat))
}



RepMarBG <- function(amat) {
  if (class(amat)[1] == "igraph") {
    amat <- grMAT(amat)
  }
  if (class(amat)[1] == "graphNEL") {
    amat <- grMAT(amat)
  }
  if (class(amat)[1] == "character") {
    amat <- grMAT(amat)
  }
  if (length(rownames(amat)) != ncol(amat) || length(colnames(amat)) != ncol(amat)) {
    rownames(amat) <- 1:ncol(amat)
    colnames(amat) <- 1:ncol(amat)
  }
  na <- ncol(amat)
  at <- which(amat + t(amat) + diag(na) == 0, arr.ind = TRUE)
  if (dim(at)[1] != 0) {
    for (i in 1:dim(at)[1]) {
      for (j in 1:na) {
        if (amat[at[i, 1], j] %% 100 > 9 || amat[j, at[i, 1]] %% 10 == 1 || amat[at[i, 2], j] %% 100 > 9 || amat[j, at[i, 2]] %% 10 == 1) {
          return(list(verify = FALSE, amat = NA))
        }
      }
    }
  }
  for (i in 1:na) {
    for (j in 1:na) {
      if (amat[i, j] == 10) {
        amat[i, j] <- 100
      }
      if (amat[i, j] == 1) {
        amat[i, j] <- 100
        amat[j, i] <- 100
      }
    }
  }
  return(list(verify = TRUE, amat = amat))
}


`RepMarDAG` <- function(amat) {
  if (class(amat)[1] == "igraph") {
    amat <- grMAT(amat)
  }
  if (class(amat)[1] == "graphNEL") {
    amat <- grMAT(amat)
  }
  if (class(amat)[1] == "character") {
    amat <- grMAT(amat)
  }
  if (length(rownames(amat)) != ncol(amat) || length(colnames(amat)) != ncol(amat)) {
    rownames(amat) <- 1:ncol(amat)
    colnames(amat) <- 1:ncol(amat)
  }
  na <- ncol(amat)
  full <- sort(unique(which(amat %% 100 > 9, arr.ind = TRUE)[, 1]))
  arc <- sort(unique(which(amat > 99, arr.ind = TRUE)[, 1]))
  arrow <- sort(unique(as.vector(which(amat %% 10 == 1, arr.ind = TRUE))))
  S <- full[full != full[1]]
  Ma <- full[1]
  while (length(S) > 0) {
    dim <- c()
    for (i in S) {
      dim <- c(dim, length(which(amat[i, Ma] %% 100 > 9, arr.ind = TRUE)))
    }
    s <- S[which(dim == max(dim))[1]]
    ns <- which(amat[s, Ma] %% 100 > 9, arr.ind = TRUE)
    if (min(amat[ns, ns] + diag(length(ns))) == 0) {
      return(FALSE)
    }
    Ma <- c(Ma, s)
    S <- S[S != s]
  }
  at <- which(amat + t(amat) == 0, arr.ind = TRUE)
  ai <- c()
  if (length(at[, 1]) != 0) {
    for (i in (1:length(at[, 1]))) {
      for (j in 1:na) {
        if ((amat[at[i, 1], j] %% 10 == 1 || amat[at[i, 1], j] > 99) && (amat[at[i, 2], j] %% 10 != 1) && (amat[at[i, 2], j] < 100)) {
          ai <- c(ai, j)
        }
      }
      if (length(ai) == 0) {
        break
      }
      for (j in ((1:na)[-ai])) {
        if ((max(amat[ai, j] > 99) == 1) && (amat[at[i, 2], j] %% 10 == 1 || amat[at[i, 2], j] > 99) && (amat[at[i, 1], j] %% 10 != 1) && (amat[at[i, 1], j] < 100)) {
          return(list(verify = FALSE, amat = NA))
        }
      }
      ai <- c()
    }
  }
  for (i in Ma) {
    v <- which(amat[i, ] %% 100 > 9)
    for (j in v) {
      amat[i, j] <- 1
      amat[j, i] <- 0
    }
  }
  at <- which(amat + t(amat) + diag(na) == 0, arr.ind = TRUE)
  if (length(at[, 1]) != 0) {
    for (i in (1:length(at[, 1]))) {
      for (j in 1:na) {
        if ((amat[at[i, 1], j] %% 10 == 1 || amat[at[i, 1], j] > 99) && (amat[at[i, 2], j] %% 10 == 1 || amat[at[i, 2], j] > 99)) {
          amat[at[i, 1], j] <- 1
          amat[at[i, 2], j] <- 1
        }
      }
    }
  }
  O <- c()
  Oc <- arrow
  while (length(Oc) > 0) {
    for (i in Oc) {
      if (max(amat[i, Oc] %% 10) == 0) {
        O <- c(O, i)
        break
      }
    }
    Oc <- Oc[Oc != i]
  }
  for (i in arc) {
    if (length(which(arrow == i)) == 0) {
      O <- c(O, i)
    }
  }
  aarc <- which(amat > 99, arr.ind = TRUE)
  if (length(aarc)[1] > 0) {
    for (i in 1:(length(aarc[, 1]))) {
      # 	if(length(O)==0){
      # 		amat[aarc[i,1],aarc[i,2]]<-0
      if (which(O == aarc[i, 1]) > which(O == aarc[i, 2])) {
        amat[aarc[i, 1], aarc[i, 2]] <- 1
      } else {
        amat[aarc[i, 1], aarc[i, 2]] <- 0
      }
    }
  }
  return(list(verify = TRUE, amat = amat))
}




`inducedChainGraph` <-
  function(amat, cc = rownames(amat), cond = NULL, type = "LWF") {
    ### Induced chain graph with chain components cc.
    inducedBlockGraph <- function(amat, sel, cond) {
      S <- inducedConGraph(amat, sel = union(cond, sel), cond = NULL)
      In(S[cond, sel, drop = FALSE])
    }
    nod <- rownames(amat)
    nam <- c(list(cond), cc)
    if (!all(unlist(nam) %in% nod)) {
      stop("The chain components or the conditioning set are wrong.")
    }
    for (h in nam) {
      for (k in nam) {
        h <- unlist(h)
        k <- unlist(k)
        if (setequal(h, k)) {
          next
        }
        if (length(intersect(h, k) > 0)) {
          stop("The sets are not disjoint!")
        }
      }
    }
    nam <- unlist(nam)
    cg <- matrix(0, length(nam), length(nam))
    dimnames(cg) <- list(nam, nam)
    kc <- length(cc)
    if (type == "AMP") {
      for (i in 1:kc) {
        past <- unlist(cc[0:(i - 1)])
        Past <- union(cond, past)
        g <- cc[[i]]

        Sgg.r <- inducedConGraph(amat, sel = g, cond = Past)
        cg[g, g] <- Sgg.r
        if (length(past) != 0) {
          Pgr <- inducedRegGraph(amat, sel = g, cond = Past)
          cg[Past, g] <- Pgr
        }
      }
    } else if (type == "LWF") {
      for (i in 1:kc) {
        past <- unlist(cc[0:(i - 1)])
        Past <- union(cond, past)
        g <- cc[[i]]

        Sgg.r <- inducedConGraph(amat, sel = g, cond = Past)
        cg[g, g] <- Sgg.r
        if (length(past) != 0) {
          Cgr <- inducedBlockGraph(amat, sel = g, cond = Past)
          cg[Past, g] <- Cgr
        }
      }
    } else if (type == "MRG") {
      for (i in 1:kc) {
        past <- unlist(cc[0:(i - 1)])
        Past <- union(cond, past)
        g <- cc[[i]]

        Sgg.r <- inducedCovGraph(amat, sel = g, cond = Past)
        cg[g, g] <- Sgg.r
        if (length(past) != 0) {
          Pgr <- inducedRegGraph(amat, sel = g, cond = Past)
          cg[Past, g] <- Pgr
        }
      }
    } else {
      stop("Wrong type.")
    }
    n <- unlist(cc)
    cg[n, n, drop = FALSE]
  }


"inducedConGraph" <-
  function(amat, sel = rownames(amat), cond = NULL) {
    ### Induced concentration graph for a set of nodes given a conditioning set.
    ancGraph <- function(A) {
      ## Edge matrix of the overall ancestor graph.
      if (sum(dim(A)) == 0) {
        return(A)
      } else {
        return(In(solve(2 * diag(nrow(A)) - A)))
      }
    }

    trclos <- function(M) {
      ## Transitive closure of an UG with edge matrix M. See Wermuth and Cox (2004).
      edgematrix(transClos(adjMatrix(M)))
    }

    A <- edgematrix(amat) # From the adjacency matrix to edge matrix
    nod <- rownames(A)
    if (!all(cond %in% nod)) {
      stop("Conditioning nodes are not among the vertices.")
    }
    if (!all(sel %in% nod)) {
      stop("Selected nodes are not among the vertices.")
    }

    if (length(intersect(sel, cond) > 0)) {
      stop("The sets are not disjoint!")
    }

    l <- setdiff(nod, union(sel, cond)) # Marginal nodes
    g <- sel
    r <- cond
    L <- union(l, g)
    R <- union(g, r)

    Al <- ancGraph(A[l, l, drop = FALSE])
    ARR.l <- In(A[R, R, drop = FALSE] +
      A[R, l, drop = FALSE] %*% Al %*% A[l, R, drop = FALSE])
    TRl <- In(A[R, l, drop = FALSE] %*% Al)
    DRl <- In(diag(length(R)) + TRl %*% t(TRl))
    out <- In(t(ARR.l) %*% trclos(DRl) %*% ARR.l)
    out <- out[g, g, drop = FALSE]
    adjMatrix(out) * 10
  }

"inducedCovGraph" <-
  function(amat, sel = rownames(amat), cond = NULL) {
    ### Induced covariance graph for a set of nodes given a conditioning set.
    ancGraph <- function(A) {
      ## Edge matrix of the overall ancestor graph.
      if (sum(dim(A)) == 0) {
        return(A)
      } else {
        return(In(solve(2 * diag(nrow(A)) - A)))
      }
    }
    trclos <- function(M) {
      ## Transitive closure of an UG with edge matrix M. See Wermuth and Cox (2004).
      edgematrix(transClos(adjMatrix(M)))
    }
    A <- edgematrix(amat) # From the adjacency matrix to edge matrix
    nod <- rownames(A)
    if (!all(cond %in% nod)) {
      stop("Conditioning nodes are not among the vertices.")
    }
    if (!all(sel %in% nod)) {
      stop("Selected nodes are not among the vertices.")
    }
    if (length(intersect(sel, cond) > 0)) {
      stop("The sets are not disjoint!")
    }
    l <- setdiff(nod, union(sel, cond)) # Marginalized over nodes
    g <- sel
    r <- cond
    L <- union(l, g)
    R <- union(g, r)

    AL <- ancGraph(A[L, L, drop = FALSE]) # In(solve(2*diag(length(L)) - A[L,L]))
    TrL <- In(A[r, L, drop = FALSE] %*% AL)
    DLr <- In(diag(length(L)) + t(TrL) %*% TrL)
    cl <- trclos(DLr)
    out <- In(AL %*% cl %*% t(AL))
    out <- out[g, g, drop = FALSE]
    adjMatrix(out) * 100
  }
"inducedDAG" <-
  function(amat, order, cond = NULL) {
    ### Induced DAG in a new ordering.
    cc <- as.list(order)
    inducedChainGraph(amat, cc = cc, cond = cond)
  }

"inducedRegGraph" <-
  function(amat, sel = rownames(amat), cond = NULL) {
    ### Induced regression graph for a set of nodes given a conditioning set.
    ancGraph <- function(A) {
      ## Edge matrix of the overall ancestor graph.
      if (sum(dim(A)) == 0) {
        return(A)
      } else {
        return(In(solve(2 * diag(nrow(A)) - A)))
      }
    }
    trclos <- function(M) {
      ## Transitive closure of an UG with edge matrix M. See Wermuth and Cox (2004).
      edgematrix(transClos(adjMatrix(M)))
    }
    A <- edgematrix(amat) # From the adjacency matrix to edge matrix
    nod <- rownames(A)
    if (!all(cond %in% nod)) {
      stop("Conditioning nodes are not among the vertices.")
    }
    if (!all(sel %in% nod)) {
      stop("Selected nodes are not among the vertices.")
    }
    if (length(intersect(sel, cond) > 0)) {
      stop("The sets are not disjoint!")
    }
    l <- setdiff(nod, union(sel, cond)) # Nodes marginalized over
    g <- sel
    r <- cond
    L <- union(l, g)
    R <- union(g, r)

    AL <- ancGraph(A[L, L, drop = FALSE]) # A^{LL}
    TrL <- In(A[r, L, drop = FALSE] %*% AL) # T_{rL}
    DrL <- In(diag(length(r)) + TrL %*% t(TrL)) # D_{rr-L}
    Arr.L <- In(A[r, r, drop = FALSE] + A[r, L, drop = FALSE] %*% AL
      %*% A[L, r, drop = FALSE]) # A_{rr.L}
    FLr <- In(AL %*% A[L, r, drop = FALSE]) # F_{Lr}
    out <- In(AL %*% t(TrL) %*% trclos(DrL) %*% Arr.L + FLr)
    t(out[g, r, drop = FALSE])
  }

Try the ggm package in your browser

Any scripts or data that you put into this service are public.

ggm documentation built on May 29, 2024, 7:27 a.m.