Nothing
#' @title TableSubgroupGLM: Sub-group analysis table for GLM and GLMM(lme4 package).
#' @description Sub-group analysis table for GLM.
#' @param formula formula with survival analysis.
#' @param var_subgroup 1 sub-group variable for analysis, Default: NULL
#' @param var_cov Variables for additional adjust, Default: NULL
#' @param data Data or svydesign in survey package.
#' @param family family, "gaussian" or "binomial" or 'poisson' or 'quasipoisson'
#' @param decimal.estimate Decimal for estimate, Default: 2
#' @param decimal.percent Decimal for percent, Default: 1
#' @param decimal.pvalue Decimal for pvalue, Default: 3
#' @param labeldata Label info, made by `mk.lev` function, Default: NULL
#' @param count_by Variable name to stratify counts by (string). Default: NULL.
#' @param event If `TRUE`, show counts/metrics instead of only model estimates. Default: FALSE.
#' @return Sub-group analysis table.
#' @details This result is used to make forestplot.
#' @examples
#' library(survival)
#' library(dplyr)
#' lung %>%
#' mutate(
#' status = as.integer(status == 1),
#' sex = factor(sex),
#' kk = factor(as.integer(pat.karno >= 70))
#' ) -> lung
#' TableSubgroupGLM(status ~ sex, data = lung, family = "binomial")
#' TableSubgroupGLM(status ~ sex, var_subgroup = "kk", data = lung, family = "binomial")
#'
#' ## survey design
#' library(survey)
#' data.design <- svydesign(id = ~1, data = lung)
#' TableSubgroupGLM(status ~ sex, data = data.design, family = "binomial")
#' TableSubgroupGLM(status ~ sex, var_subgroup = "kk", data = data.design, family = "binomial")
#' @seealso
#' \code{\link[purrr]{safely}},\code{\link[purrr]{map}},\code{\link[purrr]{map2}}
#' \code{\link[stats]{glm}}
#' \code{\link[survey]{svyglm}}
#' @rdname TableSubgroupGLM
#' @export
#' @importFrom purrr possibly map_dbl map map2
#' @importFrom dplyr group_split select filter mutate bind_cols
#' @importFrom magrittr %>%
#' @importFrom survey svyglm
#' @importFrom stats glm coefficients anova gaussian quasibinomial poisson quasipoisson qnorm terms
#' @importFrom utils tail
#' @importFrom lme4 glmer fixef
#' @importFrom car Anova
TableSubgroupGLM <- function(formula, var_subgroup = NULL, var_cov = NULL, data, family = "binomial", decimal.estimate = 2, decimal.percent = 1, decimal.pvalue = 3, labeldata = NULL, count_by = NULL, event = FALSE) {
. <- variable <- var_label <- val_label <- level <- NULL
### 경고문 ###
if (is.null(count_by) && !(event)){
fixed_effects <- attr(terms(as.formula(formula)), "term.labels")
fixed_effects <- Filter(function(term) {
!grepl("\\|", term)
}, fixed_effects)
if (length(fixed_effects) > 1) stop("Formula must contain only 1 independent variable")
if (any(class(data) == "survey.design" & !is.null(var_subgroup))) {
if (is.numeric(data$variables[[var_subgroup]])) stop("var_subgroup must categorical.")
} else if (any(class(data) == "data.frame" & !is.null(var_subgroup))) {
if (is.numeric(data[[var_subgroup]])) stop("var_subgroup must categorical.")
}
## functions with error
possible_table <- purrr::possibly(table, NA)
possible_prop.table <- purrr::possibly(function(x) {
prop.table(x, 1)[2, ] * 100
}, NA)
possible_pv <- purrr::possibly(function(x) {
summary(x)[["coefficients"]][2, ] %>% tail(1)
}, NA)
possible_glm <- purrr::possibly(stats::glm, NA)
possible_svyglm <- purrr::possibly(survey::svyglm, NA)
possible_modely <- purrr::possibly(function(x) {
purrr::map_dbl(x, .[["y"]], 1)
}, NA)
possible_glmer <- purrr::possibly(lme4::glmer, NA)
possible_lmertest <- purrr::possibly(lmerTest::lmer, NA)
xlabel <- setdiff(as.character(formula)[[3]], "+")[1]
ncoef <- ifelse(any(class(data) == "survey.design"), ifelse(length(levels(data$variables[[xlabel]])) <= 2, 1, length(levels(data$variables[[xlabel]])) - 1),
ifelse(length(levels(data[[xlabel]])) <= 2, 1, length(levels(data[[xlabel]])) - 1)
)
var_cov <- setdiff(var_cov, c(as.character(formula[[3]]), var_subgroup))
is_mixed_effect <- grepl("\\|", deparse(formula))
family.svyglm <- gaussian()
if (family == "binomial") family.svyglm <- quasibinomial()
if (family == "poisson") family.svyglm <- poisson()
if (family == "quasipoisson") family.svyglm <- quasipoisson()
### subgroup 지정 안 한 경우 ###
if (is.null(var_subgroup)) {
# 공변량 있는 경우 formula 변경
if (!is.null(var_cov)) {
formula <- as.formula(paste0(deparse(formula), " + ", paste(var_cov, collapse = "+")))
}
if (is_mixed_effect) {
if (family == "gaussian") {
model <- lmerTest::lmer(formula, data = data)
} else {
model <- lme4::glmer(formula, data = data, family = family)
}
xlev <- NA
xlabel <- attr(terms(formula), "term.labels")[1]
xlev <- tryCatch(
{
levels(data[[xlabel]])
},
error = function(e) {
warning("Failed to retrieve factor levels for fixed effect.")
NA
}
)
cc <- summary(model)$coefficients
mo_sum <- summary(model)
ncoef <- nrow(cc) - 1
Point.Estimate <- if (family %in% c("binomial", "poisson", "quasipoisson")) {
round(exp(lme4::fixef(model)), decimal.estimate)[2:(1 + ncoef)]
} else {
round(lme4::fixef(model), decimal.estimate)[2:(1 + ncoef)]
}
CI <- tryCatch(
{
ci_bounds <- confint(model, parm = "beta_", level = 0.95)
if (family %in% c("binomial", "poisson", "quasipoisson")) {
round(exp(ci_bounds), decimal.estimate)[-1, ]
} else {
round(ci_bounds, decimal.estimate)[-1, ]
}
},
error = function(e) {
cc <- summary(model)$coefficients
matrix(
c(
cc[2:(1 + ncoef), 1] - qnorm(0.975) * cc[2:(1 + ncoef), 2],
cc[2:(1 + ncoef), 1] + qnorm(0.975) * cc[2:(1 + ncoef), 2]
),
ncol = 2,
dimnames = list(rownames(cc)[2:(1 + ncoef)], c("2.5 %", "97.5 %"))
) %>%
{
if (family %in% c("binomial", "poisson", "quasipoisson")) round(exp(.), decimal.estimate) else round(., decimal.estimate)
}
}
)
# P-value 계산
pv <- tryCatch(
{
round(cc[2:(1 + ncoef), grep("Pr", colnames(cc), value = TRUE)], decimal.pvalue)
},
error = function(e) {
warning("P-value computation failed. Returning NA.")
rep(NA, ncoef)
}
)
response_var <- as.character(formula(model)[[2]])
response_data <- data[[response_var]]
event_count <- sum(response_data)
used_data <- model@frame
total_count <- nrow(used_data)
model <- list()
model$y <- c(event_count, rep("", total_count - 1))
} else {
if (any(class(data) == "survey.design")) {
model <- survey::svyglm(formula, design = data, x = T, family = family.svyglm)
# if (!is.null(model$xlevels) & length(model$xlevels[[1]]) != 2) stop("Categorical independent variable must have 2 levels.")
} else {
model <- stats::glm(formula, data = data, x = T, family = family)
# if (!is.null(model$xlevels) & length(model$xlevels[[1]]) != 2) stop("Categorical independent variable must have 2 levels.")
}
xlev <- NA
if (!is.null(model$xlevels[[xlabel]])) {
xlev <- model$xlevels[[xlabel]]
}
# cc, PE, CI, PV 구하기
cc <- summary(model)$coefficients
Point.Estimate <- round(stats::coef(model), decimal.estimate)[2:(1 + ncoef)]
CI <- round(matrix(c(cc[2:(1 + ncoef), 1] - qnorm(0.975) * cc[2:(1 + ncoef), 2], cc[2:(1 + ncoef), 1] + qnorm(0.975) * cc[2:(1 + ncoef), 2]),
ncol = 2,
dimnames = list(paste0(xlabel, xlev[-1]), c("2.5 %", "97.5 %"))
), decimal.estimate)
if (family %in% c("binomial", "poisson", "quasipoisson")) {
Point.Estimate <- round(exp(stats::coef(model)), decimal.estimate)[2:(1 + ncoef)]
CI <- round(exp(matrix(c(cc[2:(1 + ncoef), 1] - qnorm(0.975) * cc[2:(1 + ncoef), 2], cc[2:(1 + ncoef), 1] + qnorm(0.975) * cc[2:(1 + ncoef), 2]),
ncol = 2,
dimnames = list(paste0(xlabel, xlev[-1]), c("2.5 %", "97.5 %"))
)), decimal.estimate)
}
# if (length(Point.Estimate) > 1){
# stop("Formula must contain 1 independent variable only.")
# }
# event <- model$y
# prop <- round(prop.table(table(event, model$x[, 1]), 2)[2, ] * 100, decimal.percent)
pv <- round(summary(model)$coefficients[2:(1 + ncoef), 4], decimal.pvalue)
}
# output 만들기
if (ncoef < 2) {
data.frame(Variable = "Overall", Count = length(model$y), Percent = 100, `Point Estimate` = Point.Estimate, Lower = CI[1], Upper = CI[2]) %>%
dplyr::mutate(`P value` = ifelse(pv >= 0.001, pv, "<0.001"), `P for interaction` = NA) -> out
if (family == "binomial") {
names(out)[4] <- "OR"
}
if (family %in% c("poisson", "quasipoisson")) {
names(out)[4] <- "RR"
}
} else {
data.frame(
Variable = c("Overall", rep("", length(Point.Estimate))), Count = c(length(model$y), rep("", length(Point.Estimate))), Percent = c(100, rep("", length(Point.Estimate))),
Levels = paste0(xlabel, "=", xlev), `Point Estimate` = c("Reference", Point.Estimate), Lower = c("", CI[, 1]), Upper = c("", CI[, 2])
) %>%
dplyr::mutate(`P value` = c("", ifelse(pv >= 0.001, pv, "<0.001")), `P for interaction` = NA) -> out
if (family == "binomial") {
names(out)[5] <- "OR"
}
if (family %in% c("poisson", "quasipoisson")) {
names(out)[5] <- "RR"
}
rownames(out) <- NULL
if (!is.null(labeldata)) {
out$Levels <- paste0(labeldata[variable == xlabel, var_label[1]], "=", sapply(xlev, function(x) {
labeldata[variable == xlabel & level == x, val_label]
}))
}
}
return(out)
} else if (length(var_subgroup) >= 2 | any(grepl(var_subgroup, formula))) {
stop("Please input correct subgroup variable.")
} else {
### subgroup 지정 한 경우 ###
# 공변량 있는 경우 formula 변경
if (!is.null(var_cov)) {
formula <- as.formula(paste0(deparse(formula), " + ", paste(var_cov, collapse = "+")))
}
if (!is_mixed_effect) {
if (any(class(data) == "survey.design")) {
### survey data인 경우 ###
vars_in_formula <- all.vars(as.formula(formula))
complete_data <- data$variables[complete.cases(dplyr::select(data$variables, dplyr::all_of(vars_in_formula))), ]
data$variables[[var_subgroup]] %>%
table() %>%
names() -> label_val
label_val %>% purrr::map(~ possible_svyglm(formula, design = subset(data, get(var_subgroup) == .), x = TRUE, family = family.svyglm)) -> model
xlev <- NA
if (length(survey::svyglm(formula, design = data)$xlevels[[xlabel]]) > 0) {
xlev <- survey::svyglm(formula, design = data)$xlevels[[xlabel]]
}
# pv_int 구하기
# pv_int <- tryCatch(
# {
# pvs_int <- possible_svyglm(as.formula(gsub(xlabel, paste(xlabel, "*", var_subgroup, sep = ""), deparse(formula))), design = data, family = family.svyglm) %>%
# summary() %>%
# coefficients()
# pv_int <- round(pvs_int[nrow(pvs_int), ncol(pvs_int)], decimal.pvalue)
# pv_int
# },
# error = function(e) {
# return(NA)
# }
# )
# if (!is.null(xlev) & length(xlev[[1]]) != 2) stop("Categorical independent variable must have 2 levels.")
data.design <- data
if (family == "binomial") {
model.int <- possible_svyglm(as.formula(gsub(xlabel, paste(xlabel, "*", var_subgroup, sep = ""), deparse(formula))), design = data.design, family = quasibinomial())
} else if (family == "gaussian") {
model.int <- possible_svyglm(as.formula(gsub(xlabel, paste(xlabel, "*", var_subgroup, sep = ""), deparse(formula))), design = data.design, family = gaussian())
} else if (family == "poisson") {
model.int <- possible_svyglm(as.formula(gsub(xlabel, paste(xlabel, "*", var_subgroup, sep = ""), deparse(formula))), design = data.design, family = poisson())
} else {
model.int <- possible_svyglm(as.formula(gsub(xlabel, paste(xlabel, "*", var_subgroup, sep = ""), deparse(formula))), design = data.design, family = quasipoisson())
}
model.int$call[[2]] <- as.formula(gsub(xlabel, paste(xlabel, "*", var_subgroup, sep = ""), deparse(formula)))
model.int$call[[3]] <- data.design
#model.int$call[[4]] <- gaussian()
model.int$call[[4]] <- family.svyglm
# print(model.int$call)
# print(family)
# print(family.svyglm)
# print(any(is.na(model.int)))
# if (any(is.na(model.int))) {
# } else if (sum(grepl(":", names(coef(model.int)))) > 1) {
# pv_anova <- anova(model.int, method = "Wald")
# pv_int <- round(pv_anova[[length(pv_anova)]][[7]], decimal.pvalue)
# }
if (is.logical(model.int)) {
pv_int <- NA
} else if (sum(grepl(":", names(coef(model.int)))) > 1) {
pv_anova <- anova(model.int, method = "Wald")
pv_int <- round(pv_anova[[length(pv_anova)]]$p[1], decimal.pvalue)
#pv_int <- round(pv_anova[nrow(pv_anova), 5], decimal.pvalue)
} else {
pvs_int <- model.int %>%
summary() %>%
coefficients()
pv_int <- round(pvs_int[nrow(pvs_int), ncol(pvs_int)], decimal.pvalue)
# if (!is.null(xlev) & length(xlev[[1]]) != 2) stop("Categorical independent variable must have 2 levels.")
}
Count <- as.vector(table(complete_data[[var_subgroup]]))
} else {
vars_in_formula <- all.vars(as.formula(formula))
complete_data <- data[complete.cases(dplyr::select(data, dplyr::all_of(vars_in_formula))), ]
data %>%
subset(!is.na(get(var_subgroup))) %>%
group_split(get(var_subgroup)) %>%
purrr::map(~ possible_glm(formula, data = ., x = T, family = family)) -> model
data %>%
subset(!is.na(get(var_subgroup))) %>%
select(dplyr::all_of(var_subgroup)) %>%
table() %>%
names() -> label_val
xlev <- NA
if (length(stats::glm(formula, data = data, family = family)$xlevels[[xlabel]]) > 0) {
xlev <- stats::glm(formula, data = data, family = family)$xlevels[[xlabel]]
}
model.int <- possible_glm(as.formula(gsub(xlabel, paste(xlabel, "*", var_subgroup, sep = ""), deparse(formula))), data = data, family = family)
# pv_int 구하기
if (any(is.na(model.int))) {
pv_int <- NA
} else if (sum(grepl(":", names(coef(model.int)))) > 1) {
pv_anova <- anova(model.int, test = "Chisq")
pv_int <- round(pv_anova[nrow(pv_anova), 5], decimal.pvalue)
} else {
pvs_int <- model.int %>%
summary() %>%
coefficients()
pv_int <- round(pvs_int[nrow(pvs_int), ncol(pvs_int)], decimal.pvalue)
# if (!is.null(xlev) & length(xlev[[1]]) != 2) stop("Categorical independent variable must have 2 levels.")
}
Count <- as.vector(table(complete_data[[var_subgroup]]))
}
# PE, CI, PV 구하기
if (family %in% c("binomial", "poisson", "quasipoisson")) {
Point.Estimate <- model %>%
purrr::map("coefficients", default = NA) %>%
lapply(function(x) {
est <- rep(NA, max(length(xlev) - 1, 1))
names(est) <- paste0(xlabel, xlev[-1])
for (i in names(est)) {
tryCatch(est[i] <- x[i],
error = function(e) est[i] <- NA
)
}
round(exp(est), decimal.estimate)
})
CI <- model %>%
purrr::map(function(model) {
cc0 <- tryCatch(summary(model)$coefficients, error = function(e) {
return(NA)
})
ci0 <- matrix(NA, ncol = 2, nrow = max(length(xlev) - 1, 1), dimnames = list(paste0(xlabel, xlev[-1]), c("2.5 %", "97.5 %")))
for (i in rownames(ci0)) {
ci0[i, 1] <- tryCatch(cc0[i, 1] - stats::qnorm(0.975) * cc0[i, 2], error = function(e) {
return(NA)
})
ci0[i, 2] <- tryCatch(cc0[i, 1] + stats::qnorm(0.975) * cc0[i, 2], error = function(e) {
return(NA)
})
}
round(exp(ci0), decimal.estimate)
})
} else {
Point.Estimate <- model %>%
purrr::map("coefficients", default = NA) %>%
lapply(function(x) {
est <- rep(NA, max(length(xlev) - 1, 1))
names(est) <- paste0(xlabel, xlev[-1])
for (i in names(est)) {
tryCatch(est[i] <- x[i],
error = function(e) est[i] <- NA
)
}
round(est, decimal.estimate)
})
CI <- model %>%
purrr::map(function(model) {
cc0 <- tryCatch(summary(model)$coefficients, error = function(e) {
return(NA)
})
ci0 <- matrix(NA, ncol = 2, nrow = max(length(xlev) - 1, 1), dimnames = list(paste0(xlabel, xlev[-1]), c("2.5 %", "97.5 %")))
for (i in rownames(ci0)) {
ci0[i, 1] <- tryCatch(cc0[i, 1] - stats::qnorm(0.975) * cc0[i, 2], error = function(e) {
return(NA)
})
ci0[i, 2] <- tryCatch(cc0[i, 1] + stats::qnorm(0.975) * cc0[i, 2], error = function(e) {
return(NA)
})
}
round(ci0, decimal.estimate)
})
}
pv <- model %>%
purrr::map(function(model) {
cc0 <- tryCatch(summary(model)$coefficients, error = function(e) {
return(NA)
})
pvl <- rep(NA, max(length(xlev) - 1, 1))
names(pvl) <- paste0(xlabel, xlev[-1])
for (i in names(pvl)) {
pvl[i] <- tryCatch(cc0[i, 4], error = function(e) {
return(NA)
})
}
round(pvl, decimal.pvalue)
})
}
if (is_mixed_effect) {
vars_in_formula <- all.vars(as.formula(formula))
complete_data <- data[complete.cases(dplyr::select(data, dplyr::all_of(vars_in_formula))), ]
model <- data %>%
subset(!is.na(get(var_subgroup))) %>%
group_split(get(var_subgroup)) %>%
purrr::map(~ if (family == "gaussian") {
possible_lmertest(formula, data = ., REML = FALSE)
} else {
possible_glmer(formula, data = ., family = family)
})
label_val <- data %>%
subset(!is.na(get(var_subgroup))) %>%
select(dplyr::all_of(var_subgroup)) %>%
table() %>%
names()
xlabel <- attr(terms(formula), "term.labels")[1]
xlev <- NA
xlev <- tryCatch(
{
levels(data[[xlabel]])
},
error = function(e) {
warning("Failed to retrieve factor levels for fixed effect.")
NA
}
)
# Interaction model for overall interaction p-value
model.int <- tryCatch(
if (length(xlev) > 1) {
if (family == "gaussian") {
possible_lmertest(as.formula(gsub(xlabel, paste0(xlabel, "*", var_subgroup), deparse(formula))),
data = data, REML = FALSE
)
} else {
possible_glmer(as.formula(gsub(xlabel, paste0(xlabel, "*", var_subgroup), deparse(formula))),
data = data, family = family
)
}
} else {
NA
},
error = function(e) NA
)
# Calculate pv_int
if (is.na(model.int) || !inherits(model.int, "merMod")) { # Check if model is invalid or not an S4 object
pv_int <- NA
} else {
coef_names <- names(lme4::fixef(model.int))
if (sum(grepl(":", coef_names)) > 1) { # Check for more than one interaction term
pv_anova <- car::Anova(model.int)
interaction_row <- grep(":", rownames(pv_anova), value = TRUE)
pr_row <- grep("Pr", colnames(pv_anova), value = TRUE)
pv_int <- round(pv_anova[interaction_row, pr_row], decimal.pvalue)
} else {
pvs_int <- summary(model.int)$coefficients # Access coefficients table
pv_int <- round(pvs_int[nrow(pvs_int), ncol(pvs_int)], decimal.pvalue) # Extract p-value for interaction
formula_string <- deparse(formula(model.int)) # Extract the formula of the model
}
}
# Calculate Count (subgroup sizes)
Count <- as.vector(table(complete_data[[var_subgroup]]))
# Calculate Point Estimate (PE), Confidence Interval (CI), and P-value (PV)
if (family %in% c("binomial", "poisson", "quasipoisson")) {
# For binomial/Poisson families
Point.Estimate <- model %>%
purrr::map(~ tryCatch(
{
coef <- lme4::fixef(.)
if (is.null(coef)) {
return(rep(NA, max(length(xlev) - 1, 1)))
}
est <- rep(NA, max(length(xlev) - 1, 1))
names(est) <- paste0(xlabel, xlev[-1])
for (i in names(est)) {
tryCatch(est[i] <- coef[i], error = function(e) est[i] <- NA)
}
round(exp(est), decimal.estimate)
},
error = function(e) rep(NA, max(length(xlev) - 1, 1))
))
CI <- model %>%
purrr::map(function(model) {
cc0 <- tryCatch(summary(model)$coefficients, error = function(e) NA)
ci0 <- matrix(NA,
ncol = 2, nrow = max(length(xlev) - 1, 1),
dimnames = list(paste0(xlabel, xlev[-1]), c("2.5 %", "97.5 %"))
)
for (i in rownames(ci0)) {
ci0[i, 1] <- tryCatch(cc0[i, 1] - qnorm(0.975) * cc0[i, 2], error = function(e) NA)
ci0[i, 2] <- tryCatch(cc0[i, 1] + qnorm(0.975) * cc0[i, 2], error = function(e) NA)
}
round(exp(ci0), decimal.estimate)
})
} else {
# For Gaussian families
Point.Estimate <- model %>%
purrr::map(~ tryCatch(
{
# 고정 효과 추출
coef <- lme4::fixef(.)
if (is.null(coef)) {
return(rep(NA, max(length(xlev) - 1, 1)))
}
# Point Estimate 계산
est <- rep(NA, max(length(xlev) - 1, 1))
names(est) <- paste0(xlabel, xlev[-1])
for (i in names(est)) {
tryCatch(est[i] <- coef[i], error = function(e) est[i] <- NA)
}
round(est, decimal.estimate) # Gaussian에서는 exp() 필요 없음
},
error = function(e) rep(NA, max(length(xlev) - 1, 1))
))
CI <- model %>%
purrr::map(function(model) {
cc0 <- tryCatch(summary(model)$coefficients, error = function(e) NA)
ci0 <- matrix(NA,
ncol = 2, nrow = max(length(xlev) - 1, 1),
dimnames = list(paste0(xlabel, xlev[-1]), c("2.5 %", "97.5 %"))
)
for (i in rownames(ci0)) {
ci0[i, 1] <- tryCatch(cc0[i, 1] - qnorm(0.975) * cc0[i, 2], error = function(e) NA)
ci0[i, 2] <- tryCatch(cc0[i, 1] + qnorm(0.975) * cc0[i, 2], error = function(e) NA)
}
round(ci0, decimal.estimate)
})
}
# Extract p-values for each subgroup
pv <- model %>%
purrr::map(function(model) {
cc0 <- tryCatch(summary(model)$coefficients, error = function(e) NA)
pvl <- rep(NA, max(length(xlev) - 1, 1))
names(pvl) <- paste0(xlabel, xlev[-1])
p_col <- grep("Pr", colnames(cc0), value = TRUE)
if (length(p_col) == 0) {
return(round(pvl, decimal.pvalue))
}
for (i in names(pvl)) {
pvl[i] <- tryCatch(cc0[i, p_col], error = function(e) NA)
}
round(pvl, decimal.pvalue)
})
}
# output 만들기
if (ncoef < 2) {
data.frame(Variable = paste(" ", label_val), Count = Count, Percent = round(Count / sum(Count) * 100, decimal.percent), `Point Estimate` = unlist(Point.Estimate), Lower = unlist(purrr::map(CI, 1)), Upper = unlist(purrr::map(CI, 2))) %>%
dplyr::mutate(`P value` = ifelse(pv >= 0.001, pv, "<0.001"), `P for interaction` = NA) -> out
if (!is.null(labeldata)) {
out$Variable <- paste0(" ", sapply(label_val, function(x) {
labeldata[variable == var_subgroup & level == x, val_label]
}))
}
if (family == "binomial") {
names(out)[4] <- "OR"
}
if (family %in% c("poisson", "quasipoisson")) {
names(out)[4] <- "RR"
}
} else {
data.frame(
Variable = unlist(lapply(label_val, function(x) c(x, rep("", length(xlev) - 1)))), Count = unlist(lapply(Count, function(x) c(x, rep("", length(xlev) - 1)))), Percent = unlist(lapply(round(Count / sum(Count) * 100, decimal.percent), function(x) c(x, rep("", length(xlev) - 1)))),
Levels = rep(paste0(xlabel, "=", xlev), length(label_val)), `Point Estimate` = unlist(lapply(Point.Estimate, function(x) c("Reference", x))), Lower = unlist(lapply(CI, function(x) c("", x[, 1]))), Upper = unlist(lapply(CI, function(x) c("", x[, 2])))
) %>%
dplyr::mutate(`P value` = unlist(lapply(pv, function(x) c("", ifelse(x >= 0.001, x, "<0.001")))), `P for interaction` = NA) -> out
if (family == "binomial") {
names(out)[5] <- "OR"
}
if (family %in% c("poisson", "quasipoisson")) {
names(out)[5] <- "RR"
}
if (!is.null(labeldata)) {
out$Variable <- unlist(lapply(label_val, function(x) c(labeldata[variable == var_subgroup & level == x, val_label], rep("", length(xlev) - 1))))
out$Levels <- rep(paste0(labeldata[variable == xlabel, var_label[1]], "=", sapply(xlev, function(x) {
labeldata[variable == xlabel & level == x, val_label]
})), length(label_val))
}
}
var_subgroup_rev <- var_subgroup
if (!is.null(labeldata)) {
var_subgroup_rev <- labeldata[variable == var_subgroup, var_label[1]]
}
return(rbind(c(var_subgroup_rev, rep(NA, ncol(out) - 2), ifelse(pv_int >= 0.001, pv_int, "<0.001")), out))
}
}
if ((event) && is.null(count_by)) {
original_output <- TableSubgroupGLM(formula = formula, var_subgroup = var_subgroup, var_cov = var_cov, data = data, family = family, decimal.estimate = decimal.estimate, decimal.percent = decimal.percent, decimal.pvalue = decimal.pvalue, labeldata = labeldata, count_by = count_by, event = FALSE)
count_output <- count_event_by_glm(formula = formula, data = data, count_by_var = count_by, var_subgroup = var_subgroup, decimal.percent = decimal.percent, family = family)
if (!is.null(var_subgroup)) {
for (i in 1:nrow(original_output)) {
clean_variable <- trimws(original_output$Variable[i])
if (clean_variable != "" && clean_variable %in% count_output[[var_subgroup]]) {
match_row <- which(count_output[[var_subgroup]] == clean_variable)
if (length(match_row) > 0) {
original_output$Count[i] <- count_output$Metric[match_row]
}
}
}
return(original_output)
} else {
original_output$Count[1] <- count_output$Metric[1]
return(original_output)
}
}
if ((event) && !is.null(count_by)) {
original_output <- TableSubgroupGLM(formula = formula, var_subgroup = var_subgroup, var_cov = var_cov, data = data, family = family, decimal.estimate = decimal.estimate, decimal.percent = decimal.percent, decimal.pvalue = decimal.pvalue, labeldata = labeldata, count_by = NULL, event = FALSE)
count_output <- count_event_by_glm(formula = formula, data = data, count_by_var = count_by, var_subgroup = var_subgroup, decimal.percent = decimal.percent, family = family)
if (inherits(data, "survey.design")) {
data <- data$variables
} else {
data <- data
}
count_by_levels <- sort(unique(data[[count_by]]), decreasing = TRUE)
if (!is.null(labeldata)) {
count_by_levels <- sapply(count_by_levels, function(x) {
label <- labeldata[labeldata$variable == count_by & labeldata$level == x, "val_label"]
if (length(label) > 0) {
return(label)
} else {
return(x)
}
})
count_output[[count_by]] <- sapply(count_output[[count_by]], function(x) {
label <- labeldata[labeldata$variable == count_by & labeldata$level == x, "val_label"]
if (length(label) > 0) {
return(label)
} else {
return(x)
}
})
}
if (!is.null(var_subgroup)) {
subgroup_levels <- unique(data[[var_subgroup]])
for (countlevel in count_by_levels) {
event_rate_col <- paste0("Count(", count_by, "=", countlevel, ")")
original_output <- original_output %>%
tibble::add_column(!!event_rate_col := NA, .after = "Count")
for (sub_level in subgroup_levels) {
level_label <- if (!is.null(labeldata)) {
label <- as.character(labeldata[labeldata$variable == var_subgroup & labeldata$level == sub_level, "val_label"])[1]
} else {
sub_level
}
value_to_insert <- count_output[count_output[[count_by]] == countlevel & count_output[[var_subgroup]] == sub_level, "Metric"]
value_to_insert <- value_to_insert[!is.na(value_to_insert)]
if (length(value_to_insert) > 0) {
if (!is.na(value_to_insert[1])) {
original_output[[event_rate_col]][trimws(original_output[["Variable"]]) == level_label] <- value_to_insert[1]
} else {
original_output[[event_rate_col]][trimws(original_output[["Variable"]]) == level_label] <- ""
}
} else {
original_output[[event_rate_col]][trimws(original_output[["Variable"]]) == level_label] <- ""
}
}
}
count_output_sub <- count_event_by_glm(formula = formula, data = data,
count_by_var = NULL,
var_subgroup = var_subgroup,
decimal.percent = decimal.percent, family = family)
if (!is.null(labeldata)) {
count_output_sub[[var_subgroup]] <- sapply(
count_output_sub[[var_subgroup]],
function(x) {
lab <- labeldata[labeldata$variable == var_subgroup &
labeldata$level == x,
"val_label"]
if (length(lab) > 0) lab else x
}
)
}
for (i in seq_len(nrow(original_output))) {
clean_variable <- trimws(original_output$Variable[i])
if (clean_variable %in% count_output_sub[[var_subgroup]]) {
match_row <- which(count_output_sub[[var_subgroup]] == clean_variable)[1]
original_output$Count[i] <- count_output_sub$Metric[match_row]
}
}
return(original_output)
} else {
for (countlevel in count_by_levels) {
event_rate_col <- paste0("Count(", count_by, "=", countlevel, ")")
original_output <- original_output %>%
tibble::add_column(!!event_rate_col := NA, .after = "Count")
value_to_insert <- count_output[count_output[[count_by]] == countlevel, "Metric"]
value_to_insert <- value_to_insert[!is.na(value_to_insert)]
original_output[[event_rate_col]][trimws(original_output[["Variable"]]) == "Overall"] <- value_to_insert[1]
}
count_output <- count_event_by_glm(formula = formula, data = data, count_by_var = NULL, var_subgroup = var_subgroup, decimal.percent = decimal.percent, family = family)
original_output$Count[1] <- count_output$Metric[1]
return(original_output)
}
}
if (!(event) && !is.null(count_by)) {
original_output <- TableSubgroupGLM(formula = formula, var_subgroup = var_subgroup, var_cov = var_cov, data = data, family = family, decimal.estimate = decimal.estimate, decimal.percent = decimal.percent, decimal.pvalue = decimal.pvalue, labeldata = labeldata, count_by = NULL, event = event)
count_output <- count_event_by_glm(formula = formula, data = data, count_by_var = count_by, var_subgroup = var_subgroup, decimal.percent = decimal.percent, family = family)
if (inherits(data, "survey.design")) {
data <- data$variables
} else {
data <- data
}
count_by_levels <- sort(unique(data[[count_by]]), decreasing = TRUE)
if (!is.null(labeldata)) {
# count_by_levels와 count_output의 count_by 값을 라벨로 변환
count_by_levels <- sapply(count_by_levels, function(x) {
label <- labeldata[labeldata$variable == count_by & labeldata$level == x, "val_label"]
if (length(label) > 0) {
return(label)
} else {
return(x)
}
})
count_output[[count_by]] <- sapply(count_output[[count_by]], function(x) {
label <- labeldata[labeldata$variable == count_by & labeldata$level == x, "val_label"]
if (length(label) > 0) {
return(label)
} else {
return(x)
}
})
}
if (!is.null(var_subgroup)) {
subgroup_levels <- unique(data[[var_subgroup]])
for (countlevel in count_by_levels) {
event_rate_col <- paste0("Count(", count_by, "=", countlevel, ")")
original_output <- original_output %>%
tibble::add_column(!!event_rate_col := NA, .after = "Count")
for (sub_level in subgroup_levels) {
level_label <- if (!is.null(labeldata)) {
label <- as.character(labeldata[labeldata$variable == var_subgroup & labeldata$level == sub_level, "val_label"])[1]
} else {
sub_level
}
value_to_insert <- count_output[count_output[[count_by]] == countlevel & count_output[[var_subgroup]] == sub_level, "Count"]
value_to_insert <- value_to_insert[!is.na(value_to_insert)]
original_output[[event_rate_col]][trimws(original_output[["Variable"]]) == level_label] <- value_to_insert[1]
}
}
return(original_output)
} else {
for (countlevel in count_by_levels) {
event_rate_col <- paste0("Count(", count_by, "=", countlevel, ")")
original_output <- original_output %>%
tibble::add_column(!!event_rate_col := NA, .after = "Count")
value_to_insert <- count_output[count_output[[count_by]] == countlevel, "Count"]
value_to_insert <- value_to_insert[!is.na(value_to_insert)]
original_output[[event_rate_col]][trimws(original_output[["Variable"]]) == "Overall"] <- value_to_insert[1]
}
return(original_output)
}
}
}
#' @title TableSubgroupMultiGLM: Multiple sub-group analysis table for GLM.
#' @description Multiple sub-group analysis table for GLM.
#' @param formula formula with survival analysis.
#' @param var_subgroups Multiple sub-group variables for analysis, Default: NULL
#' @param var_cov Variables for additional adjust, Default: NULL
#' @param data Data or svydesign in survey package.
#' @param family family, "gaussian" or "binomial" or 'poisson' or 'quasipoisson'
#' @param decimal.estimate Decimal for estimate, Default: 2
#' @param decimal.percent Decimal for percent, Default: 1
#' @param decimal.pvalue Decimal for pvalue, Default: 3
#' @param line Include new-line between sub-group variables, Default: F
#' @param labeldata Label info, made by `mk.lev` function, Default: NULL
#' @param count_by Variable name to stratify counts by (string). Default: NULL.
#' @param event If `TRUE`, show counts/metrics instead of only model estimates. Default: FALSE.
#' @return Multiple sub-group analysis table.
#' @details This result is used to make forestplot.
#' @examples
#' library(survival)
#' library(dplyr)
#' lung %>%
#' mutate(
#' status = as.integer(status == 1),
#' sex = factor(sex),
#' kk = factor(as.integer(pat.karno >= 70)),
#' kk1 = factor(as.integer(pat.karno >= 60))
#' ) -> lung
#' TableSubgroupMultiGLM(status ~ sex,
#' var_subgroups = c("kk", "kk1"),
#' data = lung, line = TRUE, family = "binomial"
#' )
#'
#' ## survey design
#' library(survey)
#' data.design <- svydesign(id = ~1, data = lung)
#' TableSubgroupMultiGLM(status ~ sex,
#' var_subgroups = c("kk", "kk1"),
#' data = data.design, family = "binomial"
#' )
#' @seealso
#' \code{\link[purrr]{map}}
#' \code{\link[dplyr]{bind}}
#' @rdname TableSubgroupMultiGLM
#' @export
#' @importFrom purrr map
#' @importFrom magrittr %>%
#' @importFrom dplyr bind_rows
TableSubgroupMultiGLM <- function(formula, var_subgroups = NULL, var_cov = NULL, data, family = "binomial", decimal.estimate = 2, decimal.percent = 1, decimal.pvalue = 3, line = F, labeldata = NULL, count_by = NULL, event = FALSE) {
. <- NULL
out.all <- TableSubgroupGLM(formula, var_subgroup = NULL, var_cov = var_cov, data = data, family = family, decimal.estimate = decimal.estimate, decimal.percent = decimal.percent, decimal.pvalue = decimal.pvalue, labeldata = labeldata, count_by = count_by, event = event)
if (is.null(var_subgroups)) {
return(out.all)
} else {
out.list <- purrr::map(var_subgroups, ~ TableSubgroupGLM(formula, var_subgroup = ., var_cov = var_cov, data = data, family = family, decimal.estimate = decimal.estimate, decimal.percent = decimal.percent, decimal.pvalue = decimal.pvalue, labeldata = labeldata, count_by = count_by, event = event))
out.list <- purrr::map(out.list, ~ .x %>%
dplyr::mutate(`P value` = purrr::map_chr(`P value`, ~ if (is.list(.)) as.character(unlist(.)) else as.character(.))))
if (line) {
out.newline <- out.list %>% purrr::map(~ rbind(NA, .))
return(rbind(out.all, out.newline %>% dplyr::bind_rows()))
} else {
return(rbind(out.all, out.list %>% dplyr::bind_rows()))
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.