Nothing
#' Meta-analysis of correlations
#'
#' @description
#' Calculation of common effect and random effects estimates for
#' meta-analyses with correlations; inverse variance weighting is used
#' for pooling.
#'
#' @param cor Correlation.
#' @param n Number of observations.
#' @param studlab An optional vector with study labels.
#' @param data An optional data frame containing the study
#' information, i.e., cor and n.
#' @param subset An optional vector specifying a subset of studies to
#' be used.
#' @param exclude An optional vector specifying studies to exclude
#' from meta-analysis, however, to include in printouts and forest
#' plots.
#' @param cluster An optional vector specifying which estimates come
#' from the same cluster resulting in the use of a three-level
#' meta-analysis model.
#' @param rho Assumed correlation of estimates within a cluster.
#' @param sm A character string indicating which summary measure
#' (\code{"ZCOR"} or \code{"COR"}) is to be used for pooling of
#' studies.
#' @param level The level used to calculate confidence intervals for
#' individual studies.
#' @param common A logical indicating whether a common effect
#' meta-analysis should be conducted.
#' @param random A logical indicating whether a random effects
#' meta-analysis should be conducted.
#' @param overall A logical indicating whether overall summaries
#' should be reported. This argument is useful in a meta-analysis
#' with subgroups if overall results should not be reported.
#' @param overall.hetstat A logical value indicating whether to print
#' heterogeneity measures for overall treatment comparisons. This
#' argument is useful in a meta-analysis with subgroups if
#' heterogeneity statistics should only be printed on subgroup
#' level.
#' @param prediction A logical indicating whether a prediction
#' interval should be printed.
#' @param method.tau A character string indicating which method is
#' used to estimate the between-study variance \eqn{\tau^2} and its
#' square root \eqn{\tau} (see \code{\link{meta-package}}).
#' @param method.tau.ci A character string indicating which method is
#' used to estimate the confidence interval of \eqn{\tau^2} and
#' \eqn{\tau} (see \code{\link{meta-package}}).
#' @param level.hetstat The level used to calculate confidence intervals
#' for heterogeneity statistics.
#' @param tau.preset Prespecified value for the square root of the
#' between-study variance \eqn{\tau^2}.
#' @param TE.tau Overall treatment effect used to estimate the
#' between-study variance tau-squared.
#' @param tau.common A logical indicating whether tau-squared should
#' be the same across subgroups.
#' @param method.I2 A character string indicating which method is
#' used to estimate the heterogeneity statistic I\eqn{^2}. Either
#' \code{"Q"} or \code{"tau2"}, can be abbreviated
#' (see \code{\link{meta-package}}).
#' @param level.ma The level used to calculate confidence intervals
#' for meta-analysis estimates.
#' @param method.random.ci A character string indicating which method
#' is used to calculate confidence interval and test statistic for
#' random effects estimate (see \code{\link{meta-package}}).
#' @param adhoc.hakn.ci A character string indicating whether an
#' \emph{ad hoc} variance correction should be applied in the case
#' of an arbitrarily small Hartung-Knapp variance estimate (see
#' \code{\link{meta-package}}).
#' @param level.predict The level used to calculate prediction
#' interval for a new study.
#' @param method.predict A character string indicating which method is
#' used to calculate a prediction interval (see
#' \code{\link{meta-package}}).
#' @param adhoc.hakn.pi A character string indicating whether an
#' \emph{ad hoc} variance correction should be applied for
#' prediction interval (see \code{\link{meta-package}}).
#' @param seed.predict A numeric value used as seed to calculate
#' bootstrap prediction interval (see \code{\link{meta-package}}).
#' @param null.effect A numeric value specifying the effect under the
#' null hypothesis.
#' @param method.bias A character string indicating which test is to
#' be used. Either \code{"Begg"}, \code{"Egger"}, or
#' \code{"Thompson"}, can be abbreviated. See function
#' \code{\link{metabias}}.
#' @param backtransf A logical indicating whether results for Fisher's
#' z transformed correlations (\code{sm = "ZCOR"}) should be back
#' transformed in printouts and plots. If TRUE (default), results
#' will be presented as correlations; otherwise Fisher's z
#' transformed correlations will be shown.
#' @param text.common A character string used in printouts and forest
#' plot to label the pooled common effect estimate.
#' @param text.random A character string used in printouts and forest
#' plot to label the pooled random effects estimate.
#' @param text.predict A character string used in printouts and forest
#' plot to label the prediction interval.
#' @param text.w.common A character string used to label weights of
#' common effect model.
#' @param text.w.random A character string used to label weights of
#' random effects model.
#' @param title Title of meta-analysis / systematic review.
#' @param complab Comparison label.
#' @param outclab Outcome label.
#' @param label.left Graph label on left side of null effect in forest plot.
#' @param label.right Graph label on right side of null effect in forest plot.
#' @param col.label.left The colour of the graph label on the left side of
#' the null effect.
#' @param col.label.right The colour of the graph label on the right side of
#' the null effect.
#' @param subgroup An optional vector to conduct a meta-analysis with
#' subgroups.
#' @param subgroup.name A character string with a name for the
#' subgroup variable.
#' @param print.subgroup.name A logical indicating whether the name of
#' the subgroup variable should be printed in front of the group
#' labels.
#' @param sep.subgroup A character string defining the separator
#' between name of subgroup variable and subgroup label.
#' @param test.subgroup A logical value indicating whether to print
#' results of test for subgroup differences.
#' @param prediction.subgroup A logical indicating whether prediction
#' intervals should be printed for subgroups.
#' @param seed.predict.subgroup A numeric vector providing seeds to
#' calculate bootstrap prediction intervals within subgroups. Must
#' be of same length as the number of subgroups.
#' @param byvar Deprecated argument (replaced by 'subgroup').
#' @param adhoc.hakn Deprecated argument (replaced by 'adhoc.hakn.ci').
#' @param keepdata A logical indicating whether original data (set)
#' should be kept in meta object.
#' @param warn.deprecated A logical indicating whether warnings should
#' be printed if deprecated arguments are used.
#' @param control An optional list to control the iterative process to
#' estimate the between-study variance \eqn{\tau^2}. This argument
#' is passed on to \code{\link[metafor]{rma.uni}}.
#' @param \dots Additional arguments (to catch deprecated arguments).
#'
#' @details
#' Common effect and random effects meta-analysis of correlations
#' based either on Fisher's z transformation of correlations (\code{sm
#' = "ZCOR"}) or direct combination of (untransformed) correlations
#' (\code{sm = "COR"}) (see Cooper et al., 2009, p264-5 and
#' p273-4). Only few statisticians would advocate the use of
#' untransformed correlations unless sample sizes are very large (see
#' Cooper et al., 2009, p265). The artificial example given below
#' shows that the smallest study gets the largest weight if
#' correlations are combined directly because the correlation is
#' closest to 1.
#'
#' A three-level random effects meta-analysis model (Van den Noortgate
#' et al., 2013) is utilised if argument \code{cluster} is used and at
#' least one cluster provides more than one estimate. Internally,
#' \code{\link[metafor]{rma.mv}} is called to conduct the analysis and
#' \code{\link[metafor]{weights.rma.mv}} with argument \code{type =
#' "rowsum"} is used to calculate random effects weights.
#'
#' Default settings are utilised for several arguments (assignments
#' using \code{\link{gs}} function). These defaults can be changed for
#' the current R session using the \code{\link{settings.meta}}
#' function.
#'
#' Furthermore, R function \code{\link{update.meta}} can be used to
#' rerun a meta-analysis with different settings.
#'
#' \subsection{Subgroup analysis}{
#'
#' Argument \code{subgroup} can be used to conduct subgroup analysis for
#' a categorical covariate. The \code{\link{metareg}} function can be
#' used instead for more than one categorical covariate or continuous
#' covariates.
#' }
#'
#' \subsection{Exclusion of studies from meta-analysis}{
#'
#' Arguments \code{subset} and \code{exclude} can be used to exclude
#' studies from the meta-analysis. Studies are removed completely from
#' the meta-analysis using argument \code{subset}, while excluded
#' studies are shown in printouts and forest plots using argument
#' \code{exclude} (see Examples in \code{\link{metagen}}).
#' Meta-analysis results are the same for both arguments.
#' }
#'
#' \subsection{Presentation of meta-analysis results}{
#'
#' Internally, both common effect and random effects models are
#' calculated regardless of values choosen for arguments
#' \code{common} and \code{random}. Accordingly, the estimate
#' for the random effects model can be extracted from component
#' \code{TE.random} of an object of class \code{"meta"} even if
#' argument \code{random = FALSE}. However, all functions in R
#' package \bold{meta} will adequately consider the values for
#' \code{common} and \code{random}. E.g. functions
#' \code{\link{print.meta}} and \code{\link{forest.meta}} will not
#' print results for the random effects model if \code{random =
#' FALSE}.
#'
#' A prediction interval will only be shown if \code{prediction =
#' TRUE}.
#' }
#'
#' @note
#' The function \code{\link{metagen}} is called internally to
#' calculate individual and overall treatment estimates and standard
#' errors.
#'
#' @return
#' An object of class \code{c("metacor", "meta")} with corresponding
#' generic functions (see \code{\link{meta-object}}).
#'
#' @author Guido Schwarzer \email{guido.schwarzer@@uniklinik-freiburg.de}
#'
#' @seealso \code{\link{meta-package}}, \code{\link{update.meta}},
#' \code{\link{metacont}}, \code{\link{metagen}},
#' \code{\link{print.meta}}
#'
#' @references
#' Cooper H, Hedges LV, Valentine JC (2009):
#' \emph{The Handbook of Research Synthesis and Meta-Analysis},
#' 2nd Edition.
#' New York: Russell Sage Foundation
#'
#' Van den Noortgate W, López-López JA, Marín-Martínez F, Sánchez-Meca J (2013):
#' Three-level meta-analysis of dependent effect sizes.
#' \emph{Behavior Research Methods},
#' \bold{45}, 576--94
#'
#' @examples
#' m1 <- metacor(c(0.85, 0.7, 0.95), c(20, 40, 10))
#'
#' # Print correlations (back transformed from Fisher's z
#' # transformation)
#' #
#' m1
#'
#' # Print Fisher's z transformed correlations
#' #
#' print(m1, backtransf = FALSE)
#'
#' # Forest plot with back transformed correlations
#' #
#' forest(m1)
#'
#' # Forest plot with Fisher's z transformed correlations
#' #
#' forest(m1, backtransf = FALSE)
#'
#' m2 <- update(m1, sm = "cor")
#' m2
#'
#' \dontrun{
#' # Identical forest plots (as back transformation is the identity
#' # transformation)
#' forest(m2)
#' forest(m2, backtransf = FALSE)
#' }
#'
#' @export metacor
metacor <- function(cor, n, studlab,
##
data = NULL, subset = NULL, exclude = NULL,
cluster = NULL, rho = 0,
##
sm = gs("smcor"),
level = gs("level"),
##
common = gs("common"),
random = gs("random") | !is.null(tau.preset),
overall = common | random,
overall.hetstat =
if (is.null(gs("overall.hetstat")))
common | random
else
gs("overall.hetstat"),
prediction = gs("prediction") | !missing(method.predict),
##
method.tau = gs("method.tau"),
method.tau.ci = gs("method.tau.ci"),
level.hetstat = gs("level.hetstat"),
tau.preset = NULL, TE.tau = NULL,
tau.common = gs("tau.common"),
#
method.I2 = gs("method.I2"),
#
level.ma = gs("level.ma"),
method.random.ci = gs("method.random.ci"),
adhoc.hakn.ci = gs("adhoc.hakn.ci"),
##
level.predict = gs("level.predict"),
method.predict = gs("method.predict"),
adhoc.hakn.pi = gs("adhoc.hakn.pi"),
seed.predict = NULL,
##
null.effect = 0,
##
method.bias = gs("method.bias"),
##
backtransf = gs("backtransf"),
##
text.common = gs("text.common"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.common = gs("text.w.common"),
text.w.random = gs("text.w.random"),
##
title = gs("title"), complab = gs("complab"),
outclab = "",
#
label.left = gs("label.left"),
label.right = gs("label.right"),
col.label.left = gs("col.label.left"),
col.label.right = gs("col.label.right"),
#
subgroup, subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
prediction.subgroup = gs("prediction.subgroup"),
seed.predict.subgroup = NULL,
##
byvar, adhoc.hakn,
##
keepdata = gs("keepdata"),
warn.deprecated = gs("warn.deprecated"),
##
control = NULL,
...) {
##
##
## (1) Check arguments
##
##
chknumeric(rho, min = -1, max = 1)
##
chknull(sm)
chklevel(level)
##
missing.method.tau <- missing(method.tau)
method.tau <- setchar(method.tau, gs("meth4tau"))
##
missing.tau.common <- missing(tau.common)
tau.common <- replaceNULL(tau.common, FALSE)
chklogical(tau.common)
#
method.I2 <- setchar(method.I2, gs("meth4i2"))
#
chklogical(prediction)
chklevel(level.predict)
##
missing.method.predict <- missing(method.predict)
##
method.tau <-
set_method_tau(method.tau, missing.method.tau,
method.predict, missing.method.predict)
method.predict <-
set_method_predict(method.predict, missing.method.predict,
method.tau, missing.method.tau)
##
if (any(method.predict == "NNF"))
is_installed_package("pimeta", argument = "method.predict", value = "NNF")
##
adhoc.hakn.pi <- setchar(replaceNA(adhoc.hakn.pi, ""), gs("adhoc4hakn.pi"))
#
chknumeric(null.effect, length = 1)
##
method.bias <- setmethodbias(method.bias)
##
chklogical(backtransf)
##
if (!is.null(text.common))
chkchar(text.common, length = 1)
if (!is.null(text.random))
chkchar(text.random)
if (!is.null(text.predict))
chkchar(text.predict)
if (!is.null(text.w.common))
chkchar(text.w.common, length = 1)
if (!is.null(text.w.random))
chkchar(text.w.random, length = 1)
##
chklogical(keepdata)
##
## Check for deprecated arguments in '...'
##
args <- list(...)
chklogical(warn.deprecated)
##
level.ma <- deprecated(level.ma, missing(level.ma), args, "level.comb",
warn.deprecated)
chklevel(level.ma)
##
missing.common <- missing(common)
common <- deprecated(common, missing.common, args, "comb.fixed",
warn.deprecated)
common <- deprecated(common, missing.common, args, "fixed",
warn.deprecated)
chklogical(common)
##
random <- deprecated(random, missing(random), args, "comb.random",
warn.deprecated)
chklogical(random)
##
method.random.ci <-
deprecated(method.random.ci, missing(method.random.ci),
args, "hakn", warn.deprecated)
if (is.logical(method.random.ci))
if (method.random.ci)
method.random.ci <- "HK"
else
method.random.ci <- "classic"
method.random.ci <- setchar(method.random.ci, gs("meth4random.ci"))
##
adhoc.hakn.ci <-
deprecated2(adhoc.hakn.ci, missing(adhoc.hakn.ci),
adhoc.hakn, missing(adhoc.hakn), warn.deprecated)
adhoc.hakn.ci <- setchar(replaceNA(adhoc.hakn.ci, ""), gs("adhoc4hakn.ci"))
#
missing.subgroup.name <- missing(subgroup.name)
subgroup.name <-
deprecated(subgroup.name, missing.subgroup.name, args, "bylab",
warn.deprecated)
##
print.subgroup.name <-
deprecated(print.subgroup.name, missing(print.subgroup.name),
args, "print.byvar", warn.deprecated)
print.subgroup.name <-
replaceNULL(print.subgroup.name, gs("print.subgroup.name"))
chklogical(print.subgroup.name)
##
sep.subgroup <-
deprecated(sep.subgroup, missing(sep.subgroup), args, "byseparator",
warn.deprecated)
if (!is.null(sep.subgroup))
chkchar(sep.subgroup, length = 1)
##
## Some more checks
##
chklogical(overall)
chklogical(overall.hetstat)
##
## Additional arguments / checks for metacor objects
##
fun <- "metacor"
sm <- setchar(sm, gs("sm4cor"))
##
##
## (2) Read data
##
##
nulldata <- is.null(data)
sfsp <- sys.frame(sys.parent())
mc <- match.call()
##
if (nulldata)
data <- sfsp
##
## Catch 'cor' and 'n' from data:
##
cor <- catch("cor", mc, data, sfsp)
chknull(cor)
k.All <- length(cor)
##
n <- catch("n", mc, data, sfsp)
chknull(n)
##
## Catch 'studlab', 'subgroup', 'subset', 'exclude' and 'cluster'
## from data:
##
studlab <- catch("studlab", mc, data, sfsp)
studlab <- setstudlab(studlab, k.All)
##
missing.subgroup <- missing(subgroup)
subgroup <- catch("subgroup", mc, data, sfsp)
missing.byvar <- missing(byvar)
byvar <- catch("byvar", mc, data, sfsp)
subgroup <- deprecated2(subgroup, missing.subgroup, byvar, missing.byvar)
by <- !is.null(subgroup)
##
subset <- catch("subset", mc, data, sfsp)
missing.subset <- is.null(subset)
##
exclude <- catch("exclude", mc, data, sfsp)
missing.exclude <- is.null(exclude)
##
cluster <- catch("cluster", mc, data, sfsp)
with.cluster <- !is.null(cluster)
##
## Additional checks
##
if (!by & tau.common) {
warning("Value for argument 'tau.common' set to FALSE as ",
"argument 'subgroup' is missing.")
tau.common <- FALSE
}
if (by & !tau.common & !is.null(tau.preset)) {
warning("Argument 'tau.common' set to TRUE as ",
"argument tau.preset is not NULL.")
tau.common <- TRUE
}
##
##
## (3) Check length of essential variables
##
##
chklength(n, k.All, fun)
chklength(studlab, k.All, fun)
if (with.cluster)
chklength(cluster, k.All, fun)
##
if (by) {
chklength(subgroup, k.All, fun)
chklogical(test.subgroup)
chklogical(prediction.subgroup)
}
##
##
## (4) Subset, exclude studies, and subgroups
##
##
if (!missing.subset)
if ((is.logical(subset) & (sum(subset) > k.All)) ||
(length(subset) > k.All))
stop("Length of subset is larger than number of studies.")
##
if (!missing.exclude) {
if ((is.logical(exclude) & (sum(exclude) > k.All)) ||
(length(exclude) > k.All))
stop("Length of argument 'exclude' is larger than number of studies.")
##
exclude2 <- rep(FALSE, k.All)
exclude2[exclude] <- TRUE
exclude <- exclude2
}
else
exclude <- rep(FALSE, k.All)
##
##
## (5) Store complete dataset in list object data
## (if argument keepdata is TRUE)
##
##
if (keepdata) {
if (nulldata)
data <- data.frame(.cor = cor)
else
data$.cor <- cor
##
data$.n <- n
data$.studlab <- studlab
##
if (by)
data$.subgroup <- subgroup
##
if (!missing.subset) {
if (length(subset) == dim(data)[1])
data$.subset <- subset
else {
data$.subset <- FALSE
data$.subset[subset] <- TRUE
}
}
##
if (!missing.exclude)
data$.exclude <- exclude
##
if (with.cluster)
data$.id <- data$.cluster <- cluster
}
##
##
## (6) Use subset for analysis
##
##
if (!missing.subset) {
cor <- cor[subset]
n <- n[subset]
studlab <- studlab[subset]
##
cluster <- cluster[subset]
exclude <- exclude[subset]
##
if (by)
subgroup <- subgroup[subset]
}
##
## Determine total number of studies
##
k.all <- length(cor)
##
if (k.all == 0)
stop("No studies to combine in meta-analysis.")
##
## No meta-analysis for a single study
##
if (k.all == 1) {
common <- FALSE
random <- FALSE
prediction <- FALSE
overall <- FALSE
overall.hetstat <- FALSE
}
##
## Check variable values
##
chknumeric(cor, -1, 1)
chknumeric(n, 0, zero = TRUE)
##
if (by) {
chkmiss(subgroup)
##
if (missing.subgroup.name & is.null(subgroup.name)) {
if (!missing.subgroup)
subgroup.name <- byvarname("subgroup", mc)
else if (!missing.byvar)
subgroup.name <- byvarname("byvar", mc)
}
}
##
if (!is.null(subgroup.name))
chkchar(subgroup.name, length = 1)
##
##
## (7) Calculate results for individual studies
##
##
if (sm == "ZCOR") {
TE <- cor2z(cor)
seTE <- sqrt(1 / (n - 3))
transf.null.effect <- 0.5 * log((1 + null.effect) / (1 - null.effect))
}
if (sm == "COR") {
TE <- cor
seTE <- sqrt((1 - cor^2)^2 / (n - 1))
transf.null.effect <- null.effect
}
##
##
## (8) Additional checks for three-level model
##
##
three.level <- FALSE
sel.ni <- !is.infinite(TE) & !is.infinite(seTE)
##
## Only conduct three-level meta-analysis if variable 'cluster'
## contains duplicate values after removing inestimable study
## results standard errors
##
if (with.cluster &&
length(unique(cluster[sel.ni])) != length(cluster[sel.ni]))
three.level <- TRUE
##
if (three.level) {
chkmlm(method.tau, missing.method.tau, method.predict)
##
common <- FALSE
##
if (!(method.tau %in% c("REML", "ML")))
method.tau <- "REML"
}
##
##
## (9) Do meta-analysis
##
##
m <- metagen(TE, seTE, studlab,
exclude = if (missing.exclude) NULL else exclude,
cluster = cluster, rho = rho,
##
sm = sm,
level = level,
##
common = common,
random = random,
overall = overall,
overall.hetstat = overall.hetstat,
prediction = prediction,
##
method.tau = method.tau, method.tau.ci = method.tau.ci,
level.hetstat = level.hetstat,
tau.preset = tau.preset,
TE.tau = TE.tau,
tau.common = FALSE,
#
method.I2 = method.I2,
#
level.ma = level.ma,
method.random.ci = method.random.ci,
adhoc.hakn.ci = adhoc.hakn.ci,
##
level.predict = level.predict,
method.predict = method.predict,
adhoc.hakn.pi = adhoc.hakn.pi,
seed.predict = seed.predict,
##
null.effect = transf.null.effect,
##
method.bias = method.bias,
##
backtransf = backtransf,
##
text.common = text.common, text.random = text.random,
text.predict = text.predict,
text.w.common = text.w.common, text.w.random = text.w.random,
##
title = title, complab = complab, outclab = outclab,
#
label.left = label.left, label.right = label.right,
col.label.left = col.label.left,
col.label.right = col.label.right,
#
keepdata = FALSE,
warn = FALSE,
##
control = control)
#
# Estimate common tau-squared across subgroups
#
if (by & tau.common)
hcc <- hetcalc(TE, seTE, method.tau, "", TE.tau,
method.I2, level.hetstat, subgroup, control)
##
##
## (9) Generate R object
##
##
res <- list(cor = cor, n = n)
##
## Add meta-analysis results
## (after removing unneeded list elements)
##
m$n.e <- NULL
m$n.c <- NULL
m$pscale <- NULL
m$irscale <- NULL
m$irunit <- NULL
m$method.ci <- NULL
m$method.mean <- NULL
m$approx.TE <- NULL
m$approx.seTE <- NULL
##
m$label.e <- ""
m$label.c <- ""
m$warn <- NULL
##
res <- c(res, m)
res$null.effect <- null.effect
##
## Add data
##
res$call <- match.call()
##
if (keepdata) {
res$data <- data
if (!missing.subset)
res$subset <- subset
}
##
class(res) <- c(fun, "meta")
##
## Add results from subgroup analysis
##
if (by) {
res$subgroup <- subgroup
res$subgroup.name <- subgroup.name
res$print.subgroup.name <- print.subgroup.name
res$sep.subgroup <- sep.subgroup
res$test.subgroup <- test.subgroup
res$prediction.subgroup <- prediction.subgroup
res$tau.common <- tau.common
##
if (!tau.common) {
res <- c(res, subgroup(res, seed = seed.predict.subgroup))
if (res$three.level)
res <- setNA3(res)
}
else if (!is.null(tau.preset))
res <-
c(res, subgroup(res, tau.preset, seed = seed.predict.subgroup))
else {
if (res$three.level)
res <- c(res,
subgroup(res, NULL,
factor(res$subgroup, bylevs(res$subgroup))))
else
res <-
c(res, subgroup(res, hcc$tau.resid, seed = seed.predict.subgroup))
}
##
if (tau.common && is.null(tau.preset))
res <- addHet(res, hcc)
##
res$event.w <- NULL
##
res$n.e.w <- NULL
res$n.c.w <- NULL
res$n.harmonic.mean.w <- NULL
##
res$event.e.w <- NULL
res$event.c.w <- NULL
##
res$time.e.w <- NULL
res$time.c.w <- NULL
res$t.harmonic.mean.w <- NULL
##
res <- setNAwithin(res, res$three.level)
}
##
## Backward compatibility
##
res <- backward(res)
##
class(res) <- c(fun, "meta")
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.