Description Usage Arguments Details Value References See Also Examples
Density, distribution function, quantile function and random
generation for the BurrX
distribution with shape parameter alpha
and scale parameter lambda
.
1 2 3 4 |
x,q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
shape parameter. |
lambda |
scale parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x]. |
The BurrX distribution has density
f(x; α, λ) = 2 α λ^2 x exp(-(λ x)^2)(1 - exp(-(λ x)^2))^{α - 1}; (α, λ) > 0, x > 0.
where α and λ are the shape
and scale
parameters, respectively.
dburrX
gives the density,
pburrX
gives the distribution function,
qburrX
gives the quantile function, and
rburrX
generates random deviates.
Kundu, D., and Raqab, M.Z. (2005). Generalized Rayleigh Distribution: Different Methods of Estimation, Computational Statistics and Data Analysis, 49, 187-200.
Surles, J.G., and Padgett, W.J. (2005). Some properties of a scaled Burr type X distribution, Journal of Statistical Planning and Inference, 128, 271-280.
Raqab, M.Z., and Kundu, D. (2006). Burr Type X distribution: revisited, Journal of Probability and Statistical Sciences, 4(2), 179-193.
.Random.seed
about random number; sburrX
for BurrX survival / hazard etc. functions
1 2 3 4 5 6 7 8 9 10 | ## Load data sets
data(bearings)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(bearings)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 1.1989515, lambda.est = 0.0130847
dburrX(bearings, 1.1989515, 0.0130847, log = FALSE)
pburrX(bearings, 1.1989515, 0.0130847, lower.tail = TRUE, log.p = FALSE)
qburrX(0.25, 1.1989515, 0.0130847, lower.tail=TRUE, log.p = FALSE)
rburrX(30, 1.1989515, 0.0130847)
|
[1] 0.0038777276 0.0068917037 0.0079039897 0.0096729993 0.0097765895
[6] 0.0103169195 0.0107194255 0.0110156782 0.0110256373 0.0111823805
[11] 0.0112632724 0.0112282929 0.0111822963 0.0111822963 0.0111682314
[16] 0.0095844451 0.0082307904 0.0073424782 0.0062991305 0.0061850625
[21] 0.0031489883 0.0031356221 0.0004132592
[1] 0.02972028 0.08936313 0.11957600 0.19482875 0.20066378 0.23565681
[7] 0.26933953 0.30239830 0.30372078 0.32771311 0.34387623 0.48279491
[13] 0.49220771 0.49220771 0.49488979 0.65456450 0.73486717 0.77785773
[19] 0.82204504 0.82653931 0.92765441 0.92803149 0.99303585
[1] 46.97775
[1] 66.64858 14.96179 37.93952 59.97154 45.00195 76.38246 74.35418
[8] 50.60273 85.37091 74.09369 36.52619 58.11096 72.25200 54.26715
[15] 49.60617 67.30732 79.78970 49.44015 46.68940 89.00640 16.40778
[22] 35.89981 124.48623 47.30289 48.51448 72.48315 78.38149 129.11603
[29] 48.00490 180.38325
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.