| GenExp | R Documentation |
Density, distribution function, quantile function and random
generation for the Generalized Exponential (GE)
distribution with shape parameter alpha and scale parameter lambda.
dgen.exp(x, alpha, lambda, log = FALSE)
pgen.exp(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
qgen.exp(p, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
rgen.exp(n, alpha, lambda)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
shape parameter. |
lambda |
scale parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
The generalized exponential distribution has density
f(x; \alpha, \lambda) = \alpha \lambda x\; e^{-\lambda x} \; \left\{1-e^{-\lambda x} \right\}^{\alpha -1};\; (\alpha, \lambda) > 0, x > 0.
where \alpha and \lambda are the shape and scale
parameters, respectively.
dgen.exp gives the density,
pgen.exp gives the distribution function,
qgen.exp gives the quantile function, and
rgen.exp generates random deviates.
Gupta, R. D. and Kundu, D. (2001). Exponentiated exponential family; an alternative to gamma and Weibull distributions. Biometrical Journal, 43(1), 117 - 130.
Gupta, R. D. and Kundu, D. (1999). Generalized exponential distributions. Australian and New Zealand Journal of Statistics, 41(2), 173 - 188.
.Random.seed about random number; sgen.exp for GE survival / hazard etc. functions
## Load data set
data(bearings)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 5.28321139, lambda.est = 0.03229609
dgen.exp(bearings, 5.28321139, 0.03229609, log = FALSE)
pgen.exp(bearings, 5.28321139, 0.03229609, lower.tail = TRUE,
log.p = FALSE)
qgen.exp(0.25, 5.28321139, 0.03229609, lower.tail = TRUE, log.p = FALSE)
rgen.exp(10, 5.28321139, 0.03229609)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.