Description Usage Arguments Details Value References See Also Examples
Density, distribution function, quantile function and random
generation for the Exponential Power
distribution with shape parameter alpha
and scale parameter lambda
.
1 2 3 4 | dexp.power(x, alpha, lambda, log = FALSE)
pexp.power(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
qexp.power(p, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
rexp.power(n, alpha, lambda)
|
x,q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
shape parameter. |
lambda |
scale parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x]. |
The probability density function of exponential power distribution is
f(x; α, λ) = α λ^α x^{α - 1} exp{(λ x)^α} exp{1 - exp{(λ x)^α}}; (α, λ) > 0, x > 0.
where α and λ are the shape
and scale
parameters, respectively.
dexp.power
gives the density,
pexp.power
gives the distribution function,
qexp.power
gives the quantile function, and
rexp.power
generates random deviates.
Chen, Z.(1999). Statistical inference about the shape parameter of the exponential power distribution, Journal :Statistical Papers, Vol. 40(4), 459-468.
Pham, H. and Lai, C.D.(2007). On Recent Generalizations of theWeibull Distribution, IEEE Trans. on Reliability, Vol. 56(3), 454-458.
Smith, R.M. and Bain, L.J.(1975). An exponential power life-test distribution, Communications in Statistics - Simulation and Computation, Vol.4(5), 469 - 481
.Random.seed
about random number; sexp.power
for Exponential Power distribution survival / hazard etc. functions;
1 2 3 4 5 6 7 8 9 | ## Load data sets
data(sys2)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(sys2)
## alpha.est = 0.905868898, lambda.est = 0.001531423
dexp.power(sys2, 0.905868898, 0.001531423, log = FALSE)
pexp.power(sys2, 0.905868898, 0.001531423, lower.tail = TRUE, log.p = FALSE)
qexp.power(0.25, 0.905868898, 0.001531423, lower.tail=TRUE, log.p = FALSE)
rexp.power(30, 0.905868898, 0.001531423)
|
[1] 0.0022032323 0.0021133313 0.0020511274 0.0019685452 0.0018755689
[6] 0.0018590474 0.0018198866 0.0017919159 0.0017869047 0.0017798576
[11] 0.0017751581 0.0017302839 0.0017160013 0.0016838819 0.0016667954
[16] 0.0016246642 0.0016218932 0.0016162776 0.0016044872 0.0015900130
[21] 0.0015818768 0.0015422551 0.0015347780 0.0015290106 0.0015221922
[26] 0.0015132620 0.0015086690 0.0015026786 0.0014941150 0.0014841242
[31] 0.0014796297 0.0014586664 0.0014455083 0.0014421015 0.0014162442
[36] 0.0013907057 0.0013859465 0.0013719699 0.0013620662 0.0013194909
[41] 0.0013194098 0.0013169916 0.0013001588 0.0012600416 0.0012524187
[46] 0.0012430278 0.0012243369 0.0012170044 0.0012013885 0.0011250947
[51] 0.0011127240 0.0011095815 0.0010837037 0.0010704505 0.0010148484
[56] 0.0009772899 0.0009615462 0.0009252041 0.0008987564 0.0008887747
[61] 0.0008800273 0.0008694456 0.0008379243 0.0008364119 0.0007861314
[66] 0.0007823720 0.0007495672 0.0007409960 0.0007151118 0.0006411965
[71] 0.0006174592 0.0006005157 0.0005125703 0.0004892190 0.0004404781
[76] 0.0004019763 0.0003724276 0.0003273379 0.0003184127 0.0002949544
[81] 0.0002506284 0.0002392483 0.0002367358 0.0002247294 0.0002150359
[86] 0.0001796214
[1] 0.01165065 0.01738211 0.02314496 0.03426166 0.05409299 0.05874226
[7] 0.07148475 0.08226382 0.08435742 0.08738913 0.08946880 0.11178753
[13] 0.11986869 0.13982153 0.15143095 0.18282174 0.18501316 0.18949801
[19] 0.19909570 0.21118656 0.21811708 0.25294598 0.25966927 0.26487770
[25] 0.27105637 0.27917617 0.28336154 0.28882713 0.29664874 0.30577701
[31] 0.30988180 0.32898052 0.34090212 0.34397743 0.36712994 0.38959961
[37] 0.39373683 0.40578894 0.41423712 0.44963474 0.44970071 0.45166483
[43] 0.46519558 0.49644394 0.50222261 0.50927226 0.52307728 0.52841162
[49] 0.53962093 0.59153152 0.59952056 0.60153175 0.61781710 0.62597060
[55] 0.65885726 0.67992443 0.68849410 0.70771077 0.72121720 0.72621335
[61] 0.73054691 0.73573410 0.75083566 0.75154726 0.77455402 0.77622448
[67] 0.79051709 0.79416896 0.80499487 0.83429691 0.84322044 0.84945025
[73] 0.87998010 0.88759310 0.90283837 0.91427497 0.92269449 0.93494858
[79] 0.93728934 0.94330784 0.95414778 0.95681731 0.95740038 0.96015494
[85] 0.96234034 0.97002649
[1] 143.1219
[1] 1049.05531 107.02105 626.53563 206.66119 569.59479 634.69305
[7] 753.90071 277.83209 1194.67752 398.25164 1549.97686 2502.07580
[13] 1626.11069 167.34917 380.71420 304.56536 233.11288 601.89964
[19] 519.28688 333.23740 1443.37391 212.94887 560.78149 1656.07049
[25] 15.83523 1373.98056 23.15305 1047.77517 1789.15752 1850.92156
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.