FlexWeibull: The flexible Weibull(FW) distribution

Description Usage Arguments Details Value References See Also Examples

Description

Density, distribution function, quantile function and random generation for the flexible Weibull(FW) distribution with parameters alpha and beta.

Usage

1
2
3
4
dflex.weibull(x, alpha, beta, log = FALSE)
pflex.weibull(q, alpha, beta, lower.tail = TRUE, log.p = FALSE)
qflex.weibull(p, alpha, beta, lower.tail = TRUE, log.p = FALSE)
rflex.weibull(n, alpha, beta)

Arguments

x,q

vector of quantiles.

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

alpha

parameter.

beta

parameter.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x].

Details

The flexible Weibull(FW) distribution has density

f(x) = (α + β/(x^2)) exp(α x - β/x) exp{-exp(α x - β/x)}; x ≥ 0, α > 0, β > 0.

where α and β are the shape and scale parameters, respectively.

Value

dflex.weibull gives the density, pflex.weibull gives the distribution function, qflex.weibull gives the quantile function, and rflex.weibull generates random deviates.

References

Bebbington, M., Lai, C.D. and Zitikis, R. (2007). A flexible Weibull extension, Reliability Engineering and System Safety, 92, 719-726.

See Also

.Random.seed about random number; sflex.weibull for flexible Weibull(FW) survival / hazard etc. functions

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
## Load data sets
data(repairtimes)
## Maximum Likelihood(ML) Estimates of alpha & beta for the data(repairtimes)
## Estimates of alpha & beta using 'maxLik' package
## alpha.est = 0.07077507, beta.est = 1.13181535

dflex.weibull(repairtimes, 0.07077507, 1.13181535, log = FALSE)
pflex.weibull(repairtimes, 0.07077507, 1.13181535, lower.tail = TRUE, log.p = FALSE)
qflex.weibull(0.25, 0.07077507, 1.13181535, lower.tail=TRUE, log.p = FALSE)
rflex.weibull(30, 0.07077507, 1.13181535)

Example output

 [1] 0.099932500 0.290083182 0.444710703 0.444710703 0.444710703 0.444710703
 [7] 0.434153120 0.434153120 0.403094990 0.403094990 0.403094990 0.365702607
[13] 0.365702607 0.294446501 0.294446501 0.294446501 0.294446501 0.264145034
[19] 0.214787892 0.177863329 0.177863329 0.177863329 0.177863329 0.120299365
[25] 0.120299365 0.105823034 0.089490582 0.081168533 0.071374551 0.071374551
[31] 0.063900999 0.063900999 0.052059918 0.052059918 0.046491497 0.044690802
[37] 0.042330787 0.039684021 0.039684021 0.032443734 0.030798876 0.027173564
[43] 0.026671093 0.023612010 0.003635467 0.001761316
 [1] 0.003529183 0.023209264 0.102118793 0.102118793 0.102118793 0.102118793
 [7] 0.146321153 0.146321153 0.188280178 0.188280178 0.188280178 0.226737160
[13] 0.226737160 0.292555138 0.292555138 0.292555138 0.292555138 0.320451893
[19] 0.368109545 0.407196128 0.407196128 0.407196128 0.407196128 0.480136990
[25] 0.480136990 0.502691399 0.531853250 0.548890917 0.571703260 0.571703260
[31] 0.591946466 0.591946466 0.632174432 0.632174432 0.656739938 0.665854786
[37] 0.678898761 0.695285103 0.695285103 0.752458421 0.768261262 0.805863731
[43] 0.811248014 0.843899068 0.988967184 0.995517307
[1] 0.8658453
 [1]  1.5239496  0.7483004  0.7482481 23.4036155  0.7099314  0.9299369
 [7]  2.7189493  1.3689153  0.5452036  0.2116880  5.3654069  2.6059986
[13]  1.1869485 13.0181056 16.8408339  4.0487017  1.0133000  0.3578909
[19]  1.5595988  6.1154153  0.6441952  0.8561263  0.5438824  2.8862683
[25] 22.8068735  8.6654113  0.9593140  1.8953315  1.7869496 14.0366851

reliaR documentation built on May 1, 2019, 9:51 p.m.

Related to FlexWeibull in reliaR...