Description Usage Arguments Value References See Also Examples
Conditional reliability function (crf), hazard function, hazard rate average (HRA) and survival function for the Exponentiated Logistic(EL)
distribution with shape parameter alpha
and scale parameter beta
.
1 2 3 4 | crf.expo.logistic(x, t = 0, alpha, beta)
hexpo.logistic(x, alpha, beta)
hra.expo.logistic(x, alpha, beta)
sexpo.logistic(x, alpha, beta)
|
x |
vector of quantiles. |
alpha |
shape parameter. |
beta |
scale parameter. |
t |
age component. |
crf.expo.logistic
gives the conditional reliability function (crf),
hexpo.logistic
gives the hazard function,
hra.expo.logistic
gives the hazard rate average (HRA) function, and
sexpo.logistic
gives the survival function for the Exponentiated Logistic(EL) distribution.
Ali, M.M., Pal, M. and Woo, J. (2007). Some Exponentiated Distributions, The Korean Communications in Statistics, 14(1), 93-109.
Shirke, D.T., Kumbhar, R.R. and Kundu, D.(2005). Tolerance intervals for exponentiated scale family of distributions, Journal of Applied Statistics, 32, 1067-1074
dexpo.logistic
for other Exponentiated Logistic(EL) distribution related functions;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ## load data set
data(dataset2)
## Maximum Likelihood(ML) Estimates of alpha & beta for the data(dataset2)
## Estimates of alpha & beta using 'maxLik' package
## alpha.est = 5.31302, beta.est = 139.04515
## Reliability indicators for data(dataset2):
## Reliability function
sexpo.logistic(dataset2, 5.31302, 139.04515)
## Hazard function
hexpo.logistic(dataset2, 5.31302, 139.04515)
## hazard rate average(hra)
hra.expo.logistic(dataset2, 5.31302, 139.04515)
## Conditional reliability function (age component=0)
crf.expo.logistic(dataset2, 0.00, 5.31302, 139.04515)
## Conditional reliability function (age component=3.0)
crf.expo.logistic(dataset2, 3.0, 5.31302, 139.04515)
|
[1] 0.968519448 0.966754951 0.958190852 0.949696100 0.937088944 0.937088944
[7] 0.929988672 0.929988672 0.929988672 0.926777668 0.921198265 0.921198265
[13] 0.904034713 0.891785523 0.883089108 0.883089108 0.875519641 0.873970773
[19] 0.873970773 0.872410299 0.870838244 0.864434762 0.864434762 0.857848387
[25] 0.837017298 0.835210545 0.826018320 0.772152086 0.757149483 0.754975716
[31] 0.754975716 0.739559837 0.716985469 0.703169398 0.693860463 0.691521989
[37] 0.672670086 0.667921266 0.644007716 0.607798051 0.605377275 0.593271972
[43] 0.593271972 0.588431149 0.586011431 0.586011431 0.583592312 0.573923859
[49] 0.554646107 0.549843510 0.540263771 0.533104095 0.525968606 0.518859623
[55] 0.514136142 0.507076308 0.507076308 0.504730119 0.500048842 0.488413935
[61] 0.476883870 0.467741144 0.467741144 0.460934307 0.456421267 0.443006682
[67] 0.429788315 0.423256250 0.391416935 0.391416935 0.383168808 0.381123317
[73] 0.370996659 0.365002327 0.343559248 0.339752491 0.303278438 0.269742720
[79] 0.264966463 0.263389045 0.245028922 0.237686411 0.236239416 0.236239416
[85] 0.227706905 0.203619382 0.203619382 0.203619382 0.203619382 0.196081299
[91] 0.196081299 0.181716965 0.166117146 0.165049124 0.144927072 0.126194198
[97] 0.123705693 0.119657774 0.090798482 0.090183563 0.081976347 0.074479416
[103] 0.050191205 0.050191205 0.046480362 0.027812361 0.026656484 0.020798254
[109] 0.018828525 0.004164848 0.002519918
[1] 0.0005942168 0.0006215974 0.0007499797 0.0008709822 0.0010410975
[6] 0.0010410975 0.0011326953 0.0011326953 0.0011326953 0.0011732371
[11] 0.0012424705 0.0012424705 0.0014468119 0.0015856846 0.0016812033
[16] 0.0016812033 0.0017624460 0.0017788636 0.0017788636 0.0017953355
[21] 0.0018118607 0.0018784781 0.0018784781 0.0019458778 0.0021521803
[26] 0.0021696155 0.0022572683 0.0027398551 0.0028661006 0.0028841323
[31] 0.0028841323 0.0030102139 0.0031894942 0.0032963080 0.0033671065
[36] 0.0033847485 0.0035249524 0.0035597216 0.0037316400 0.0039826094
[41] 0.0039990130 0.0040803730 0.0040803730 0.0041126027 0.0041286488
[46] 0.0041286488 0.0041446486 0.0042081778 0.0043329167 0.0043636049
[51] 0.0044243711 0.0044694047 0.0045139681 0.0045580563 0.0045871819
[56] 0.0046304677 0.0046304677 0.0046447882 0.0046732666 0.0047435068
[61] 0.0048123715 0.0048664656 0.0048664656 0.0049064514 0.0049328295
[66] 0.0050106209 0.0050863953 0.0051235262 0.0053016496 0.0053016496
[71] 0.0053470436 0.0053582547 0.0054134906 0.0054459797 0.0055609715
[76] 0.0055811892 0.0057720162 0.0059430669 0.0059671009 0.0059750208
[81] 0.0060665739 0.0061028675 0.0061099987 0.0061099987 0.0061519087
[86] 0.0062689488 0.0062689488 0.0062689488 0.0062689488 0.0063051984
[91] 0.0063051984 0.0063737886 0.0064475711 0.0064525960 0.0065466462
[96] 0.0066331633 0.0066445826 0.0066631211 0.0067940019 0.0067967664
[101] 0.0068335699 0.0068670354 0.0069744721 0.0069744721 0.0069907566
[106] 0.0070721668 0.0070771798 0.0071025374 0.0071110451 0.0071740930
[111] 0.0071811341
[1] 0.002665560 0.002254015 0.001525296 0.001323416 0.001225983 0.001225983
[7] 0.001209715 0.001209715 0.001209715 0.001207009 0.001207059 0.001207059
[13] 0.001230336 0.001258567 0.001281744 0.001281744 0.001303311 0.001307848
[19] 0.001307848 0.001312456 0.001317134 0.001336509 0.001336509 0.001356884
[25] 0.001423284 0.001429138 0.001459071 0.001636543 0.001686028 0.001693191
[31] 0.001693191 0.001743931 0.001818031 0.001863267 0.001893702 0.001901342
[37] 0.001962873 0.001978358 0.002056283 0.002174291 0.002182189 0.002221712
[43] 0.002221712 0.002237533 0.002245445 0.002245445 0.002253358 0.002285015
[49] 0.002348307 0.002364117 0.002395711 0.002419379 0.002443018 0.002466624
[55] 0.002482340 0.002505881 0.002505881 0.002513718 0.002529378 0.002568430
[61] 0.002607332 0.002638334 0.002638334 0.002661511 0.002676925 0.002722978
[67] 0.002768729 0.002791485 0.002903969 0.002903969 0.002933577 0.002940952
[73] 0.002977664 0.002999558 0.003078950 0.003093232 0.003233344 0.003368346
[79] 0.003388143 0.003394715 0.003472541 0.003504398 0.003510729 0.003510729
[85] 0.003548432 0.003658627 0.003658627 0.003658627 0.003658627 0.003694390
[91] 0.003694390 0.003764470 0.003843816 0.003849385 0.003958042 0.004066667
[97] 0.004081738 0.004106614 0.004299485 0.004303950 0.004365313 0.004424587
[103] 0.004645831 0.004645831 0.004685077 0.004920707 0.004938315 0.005036263
[109] 0.005073285 0.005514160 0.005623617
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1] 1.046078 1.045400 1.042507 1.040129 1.037206 1.037206 1.035792 1.035792
[9] 1.035792 1.035196 1.034217 1.034217 1.031569 1.029943 1.028892 1.028892
[17] 1.028038 1.027869 1.027869 1.027701 1.027534 1.026873 1.026873 1.026224
[25] 1.024349 1.024198 1.023453 1.019746 1.018870 1.018748 1.018748 1.017911
[33] 1.016771 1.016119 1.015697 1.015593 1.014783 1.014586 1.013639 1.012324
[41] 1.012240 1.011831 1.011831 1.011671 1.011592 1.011592 1.011513 1.011203
[49] 1.010606 1.010462 1.010179 1.009971 1.009767 1.009567 1.009436 1.009243
[57] 1.009243 1.009179 1.009053 1.008746 1.008448 1.008217 1.008217 1.008047
[65] 1.007936 1.007612 1.007300 1.007149 1.006437 1.006437 1.006259 1.006216
[73] 1.006001 1.005876 1.005439 1.005363 1.004658 1.004044 1.003959 1.003931
[81] 1.003611 1.003485 1.003460 1.003460 1.003316 1.002918 1.002918 1.002918
[89] 1.002918 1.002796 1.002796 1.002567 1.002323 1.002307 1.002000 1.001722
[97] 1.001685 1.001626 1.001213 1.001204 1.001089 1.000985 1.000655 1.000655
[105] 1.000605 1.000358 1.000343 1.000267 1.000241 1.000053 1.000032
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.