| Gumbel | R Documentation |
Density, distribution function, quantile function and random
generation for the Gumbel
distribution with location parameter mu and scale parameter sigma.
dgumbel(x, mu, sigma, log = FALSE)
pgumbel(q, mu, sigma, lower.tail = TRUE, log.p = FALSE)
qgumbel(p, mu, sigma, lower.tail = TRUE, log.p = FALSE)
rgumbel(n, mu, sigma)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
mu |
location parameter. |
sigma |
scale parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
The Gumbel distribution has density
f(x) = \frac{1}{\sigma} \; \exp\left\{-\left(\frac{x-\mu}{\sigma}\right)\right\} \; \exp\left[-\exp\left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}\right];\, -\infty < x < \infty, \sigma > 0.
where \mu and \sigma are the shape and scale
parameters, respectively.
dgumbel gives the density,
pgumbel gives the distribution function,
qgumbel gives the quantile function, and
rgumbel generates random deviates.
Marshall, A. W., Olkin, I. (2007). Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families, Springer, New York.
.Random.seed about random number; sgumbel for Gumbel survival / hazard etc. functions
## Load data sets
data(dataset2)
## Maximum Likelihood(ML) Estimates of mu & sigma for the data(dataset2)
## Estimates of mu & sigma using 'maxLik' package
## mu.est = 212.157, sigma.est = 151.768
dgumbel(dataset2, 212.157, 151.768, log = FALSE)
pgumbel(dataset2, 212.157, 151.768, lower.tail = TRUE, log.p = FALSE)
qgumbel(0.25, 212.157, 151.768, lower.tail=TRUE, log.p = FALSE)
rgumbel(30, 212.157, 151.768)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.