Description Usage Arguments Details Value References See Also Examples
Density, distribution function, quantile function and random
generation for the Gompertz
distribution with  shape parameter alpha and scale parameter theta.
1 2 3 4  | 
x,q | 
 vector of quantiles.  | 
p | 
 vector of probabilities.  | 
n | 
 number of observations. If   | 
alpha | 
 shape parameter.  | 
theta | 
 scale parameter.  | 
log, log.p | 
 logical; if TRUE, probabilities p are given as log(p).  | 
lower.tail | 
 logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x].  | 
The Gompertz distribution has density
f(x) = θ exp(α x) exp{θ/α (1 - exp{α x})}; x ≥ 0, θ > 0, -∞ < α < ∞.
where α and θ are the shape and scale
parameters, respectively.
dgompertz gives the density,
pgompertz gives the distribution function,
qgompertz gives the quantile function, and
rgompertz generates random deviates.
Marshall, A. W., Olkin, I. (2007). Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families, Springer, New York.
.Random.seed about random number; sgompertz for Gompertz survival / hazard etc. functions
1 2 3 4 5 6 7 8 9 10  | ## Load data sets
data(sys2)
## Maximum Likelihood(ML) Estimates of alpha & theta for the data(sys2)
## Estimates of alpha & theta using 'maxLik' package
## alpha.est = 0.00121307, theta.est = 0.00173329
dgompertz(sys2, 0.00121307, 0.00173329, log = FALSE)
pgompertz(sys2, 0.00121307, 0.00173329, lower.tail = TRUE, log.p = FALSE)
qgompertz(0.25, 0.00121307, 0.00173329, lower.tail=TRUE, log.p = FALSE)
rgompertz(30, 0.00121307, 0.00173329)
 | 
 [1] 0.0017289345 0.0017264843 0.0017239091 0.0017186857 0.0017086777
 [6] 0.0017062175 0.0016992678 0.0016931606 0.0016919506 0.0016901850
[11] 0.0016889647 0.0016754016 0.0016702826 0.0016571732 0.0016492381
[16] 0.0016266446 0.0016250049 0.0016216236 0.0016142719 0.0016047844
[21] 0.0015992317 0.0015700464 0.0015641630 0.0015595488 0.0015540110
[26] 0.0015466267 0.0015427729 0.0015376912 0.0015303217 0.0015215752
[31] 0.0015175903 0.0014986231 0.0014864225 0.0014832296 0.0014585805
[36] 0.0014336050 0.0014288907 0.0014149489 0.0014049886 0.0013615286
[41] 0.0013614449 0.0013589496 0.0013415140 0.0012995685 0.0012915474
[46] 0.0012816476 0.0012618906 0.0012541227 0.0012375525 0.0011562416
[51] 0.0011430259 0.0011396681 0.0011120125 0.0010978478 0.0010384541
[56] 0.0009983958 0.0009816251 0.0009429687 0.0009148921 0.0009043086
[61] 0.0008950401 0.0008838356 0.0008505120 0.0008489153 0.0007959379
[66] 0.0007919856 0.0007575520 0.0007485713 0.0007214914 0.0006445096
[71] 0.0006198986 0.0006023651 0.0005118117 0.0004878971 0.0004381570
[76] 0.0003990359 0.0003691146 0.0003236295 0.0003146511 0.0002910925
[81] 0.0002467356 0.0002353815 0.0002328765 0.0002209159 0.0002112707
[86] 0.0001761204
 [1] 0.008292057 0.012887769 0.017666569 0.027202602 0.044922361 0.049173909
 [7] 0.060974003 0.071100457 0.073080747 0.075955564 0.077932367 0.099363913
[13] 0.107209569 0.126742146 0.138198945 0.169452597 0.171647461 0.176144046
[19] 0.185787067 0.197971300 0.204972095 0.240312170 0.247160437 0.252470757
[25] 0.258775730 0.267069971 0.271348794 0.276939847 0.284947393 0.294301508
[31] 0.298510757 0.318116616 0.330370344 0.333533026 0.357362551 0.380515295
[37] 0.384780419 0.397208123 0.405921773 0.442442979 0.442511053 0.444537748
[43] 0.458499322 0.490735905 0.496695486 0.503964786 0.518196065 0.523693564
[49] 0.535242574 0.588656977 0.596865391 0.598931230 0.615650186 0.624014534
[55] 0.657705416 0.679245319 0.687997018 0.707598989 0.721356394 0.726441055
[61] 0.730849456 0.736123815 0.751463875 0.752186132 0.775508689 0.777199827
[67] 0.791656462 0.795346453 0.806276035 0.835785332 0.844749575 0.851001290
[73] 0.881556856 0.889153967 0.904338680 0.915703424 0.924054750 0.936185098
[79] 0.938498775 0.944442348 0.955127305 0.957754532 0.958328144 0.961036877
[85] 0.963184611 0.970728640
[1] 151.2168
 [1] 1035.67838  328.12155  453.27268  226.07411  821.56856  372.32670
 [7]  200.38196  772.63824  528.23641  802.95440  280.43928   56.26914
[13]  267.32123  852.51577  732.16918  212.68035  190.39219  610.50594
[19]   68.82952  622.37481  277.66247  773.01848  782.38086 1029.03440
[25]  264.18027   60.82824  129.98098  253.13899  214.43922  299.24723
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.